t.ttLe	An Assessment of the Impact of Vocational Education Research and Related Projects on Educational Practice in Pennsylvania Since 1966.
INSTITUTION	American Management Center. Inc., Philadelphia,
	Pa.
SPONS AGENCY	Pennsylvania Research Coordinating Unit for
	Vocational Education, Harrisburg.
PUB DATE	Aug 72
NOTE	206p.
EDRS PRICE	MF-\$0.65 HC-\$9.87
DESCR IPTORS	Curriculum Development; *Educational Practice:
	Educational Programs; *Educational Research; Program
	Evaluation; *Research Coordinating Units; *Research
	Projects; Student Characteristics; *Vocational
	Education
IDENT IFIERS	*Pennsylvania

ABSTRACT
To determine the impact of vocational education research and related projects on educational practice in Pennsylvania since 1966, descriptive data were gathered on 115 Research Coordinating Unit (RCU) projects funded from 1966 through March 1972. Some general findings were: (1) Most projects were housed in public schools (Grades 9-12) serving large rural or urban communities. (2) Most targeted populations were "regular" students, but disadvantaged and handicapped students were represented, (3) Research, curriculum development, and training programs were the major face of most. projects. (4) Impact in educational practices tended to be limited to local geographic areas, (5) Local vocational education advisory councils were little used, but when used, they proved to be effective, (6) Most trainees were white, with blacks accounting for 7.5 percent of all trai.nees, and (7) Adequacy of RCU funding, external and internal influences, and assistance received had the strongest influences on out.comes among all project. Based on these results, it was suggested that directors better utilize internal sources of influence (parents, students, advisory councils, and others) and that the role of the RCU be expanded, in terms of greater interaction with projects during and after funding. A formal and systematic model to enable such interaction is included in this report. (SB)

Conducted for:
THE STATE DEPARTMENT OF EDUCATION
RESEARCH COORDINATING UNIT
BUREAU OF VOGATIONAL-TECHNICAL \& CONTINUING EDUCATION
Conducted by:

AN ASSESSMENT OF THE IMPACT OF

VOCATIONAL EDUCATION RESEARCH

AND RELATED PROJECTS ON EDUCATIONAL

PRACTICE IN PENNSYLVANIA SINCE 1966
August 1972

This rescarch study was conducted by A.M.C. under contract (project No. 19-1050) with the Commonwealth of Pennsylvania, Department of Education, for the Research Coordinating Unit of the Bureau of Vecational-Tcchnical and Continuing liducation.

AMERICAN MANAGEMENT CENTER, INC. 262 SOUTH 15th STREET • PHILADELPHIA, PA. 19102

August 15,1972

Dr. Ferman B. Moody, Director
Research Coordinating Unit
Bureau of Vocational-Technical
ε Continuing Education
Department of Education
Box 911
Harrisburg, Pennsylvania 17126
Dear Dr. Moody,
The American Management Center, Inc., (AMC) is pleased to submit one hundred (100) copies of the final report on the "Assessment of the Impact of Vocational Education Research and Related Projects on Educational Practice in Pennsylvania since 1966."

This study was conducted according to our agreement and the study design approved by you and your associates. We feel certain, that you will find this study informative and of considerable assistance to you and those involved in vocational-technical education and its research in Pennsylvania.

We are grateful and appreciative for the cooperation and assistance extended to our personnel by you, your staff and other vocational educators throughout the conduct of this study.

It has been our pleasure to serve you and the Commonwealth and we hope to be of service to you in the near future.

Sincerely yours,

John F. Dzera, Ph.D. President

TABLE OF CONTENTS

Foreword iii
Acknowledgements v
Abstract 1
Chapter 1 Overview of the Study 5
Chapter 2 The Nature of the Projects Funded by R.C.U. 9
Chapter 3 Interdepartmental Relationships 13
Chapter 4 Description of the Projects 15
Chapter 5 Comparisons of Groups 47
Chapter 6 Relationships 73
Chapter 7 General Findings, Conclusions and Recommendations 93
Chapter 8 Model for Monitoring R. C. U. Funded Projects 105
Appendix A The Questionnaire-Opinionnaire 109
Appendix B The Interview Schedule 125
Appendix C Multiple Regression Tables 133

FOREWORD

The major thrust of this study was to assess the impact of projects funded through the Research Coordinating Unit (R.C.U.) on Vocational Education practice in Pennsylvania. Impact and factors affecting impact were the focus and design of the study.

Information and perceptions were collected from those closest to the projects, e.g. the project directors themselves and key Vocational Education personnel at the State level. Because of time constraints, as well as budgetary limitations, a more extensive stuciy could not be undertaken. However, it was found that the project directors were quite direct and honest in their responding to the mailed questionnaire and the interviews.

The manuscript was designed in a manner that would hopefally encourage its complete reading. However, for those who wish not to "wade" through the data, Chapter 1 (Overview of the Study), Chapier 4 (Description of the Projects), Chapter 7 (General Findings, Conclitsions and Recommendations), and Chapter 8 (Model for Monitoring R.C.U. Funded Projects) are a must and will give the reader a complete overview of the study and results.

All data analyses were run on an IBM 370/165 computer. The basic statistics were derived from Bromedical Computer Programs (Dixon, W. J. - BMD: Biomedical Computer Programs No. 2. Berkeley: University of California Press, 1970). The BMDO5M was used to analyze data reported in Chapter 5, while the BMDO3R was used to analyze data found in Chapter 6. Other programs from the BMD package were used to analyze data found in the remaining chapters.

Although specific suggestiuns were made concerning the focus, structure, and mission of the R.C.U., this was not the primary purpose of the study. These suggestions were "Satellite benefits" flowing from the results of studying the impact of the projects funded.

Given the amounts of monies expended by governmental agencies, the pressing needs of educational reform and the need to understand the interworkings that lead to success (or failure), we hope that this study will provide some of the needed information for dealing with these crucial issues.

ACKNOWLEDGEMENTS

It would have been difficult to conduct this study without the cooperation, assistance, encouragement, and support of a great many people.

We are greatly indebted to Dr. John W. Struck, Director for Vocational-Technical and Continuing Education for the State of Pennsylvania and Dr. Ferman B. Moody, Director of the Research Coordinating Unit, and his staff for their encouragement and support, from the very beginning to the completion of this study.

We are grateful to the following, who gave time from their very busy schedules to be interviewed by our staff, and provided invaluable assistance and insightful comments; Mr. Robert Jacoby, Dr. William Seldon, Mr. Steven Sworen, Mr. Robert Edwards, Dr. T. Dean Witmer, Ms. Margaret Horne, Ms. Blanche Curran, Ms. Carrol Kratz, Mr. Charles Lebo and other Vocational Educators.

The on-site visitations and interviews were conducted by: Mr. Curtis Bradeley, Mr. Timothy Carroll, Mr. Anthony Colistra, Mr. Herbert L. Keyser, and Mr. Hugh Swogger. These staff members travelled the width and breadth of the State of Pennsylvania and collected the data for this study. We are, indeed, thankful to them for their efforts and a job well done.

Invaluable assistance was provided by Mr. Raymond Webster and Ms. A. Poor in setting up the computer and analyzing the data collected for this study. Dr. George M. Parks and Mr. Dwight Stewart provided major support, encouragement and constructive criticism to the project team throughout the conduct of this study.

Recognition should also be given to all those who filled out the Questionnaire-Opinionnaire and/or were interviewed. They were the main source for the data--without them this study would not have been possible.

We are also thankful to Ms. Gertrude Tucker and Ms. Rosmaree Hauck who did a splendid job in typing the initial and final drafts of the study.

David Kapel Project Director
7. Projects conducted by R.C.U. at the state level had positive influence on vocational-technical education practices in Pennsylvania.
8. Satisfaction, generated by the projects, on those who came into contact with them appeared to be quite positive. Those closest to the projects were more positive than those who had less to do with day-to-day operations.
9. There were slight positive changes in attitudes of participants in the projects. Intrapersonal changes were the most positive.
10. R.C. U. funding was considered almost adequate by the directors.
11. Directors requested and received assistance from the R.C.U. and the Vocational Education Bureau of the State. They requested, but received little assistance from their own school district personnel.
12. Directors would like to see more interaction between R.C. U. and themselves after funding has been approved.
13. Local Vocational Education Advisory Councils were little used; but when used they proved to be effective.
14. Few programs had any formal external evaluation. However, most evaluations were conducted internally.
15. Most trainees were White, with Blacks accounting for 7.5% of all trainees. There were almost no Puerto Rican trainees.
16. There were differences among projects when grouped in terms of; types of communities served; size of communities served; types of programs; degree of funding; ethnic identification of students trained; and whether programs trained teachers or students. There were no differences among one year, two year, and three year projects. The factors that were making differences among the groups were: prime objectives, unexpected outcomes, factors hindering success, influencing educational practices at the national level, internal influences, satisfaction generated by the programs, changes in attitudes, adequacy of R.C. U. funding, amount of assistance, and effectiveness of Vocational Education Advisory Councils. Projects serving large communities were different from other projects. Differences were also found in work study, equipment, and curriculum type projects.
17. Adequacy of R.C.U. funding, external and internal influences and assistance received, had the strongest influences on outcomes

Abstract

This study was designed to determine the impact of vocational education research and related projects on educational practice in Pennsylvania since 1966. The study was divided into five basic phases: 1. identification of all R.C. U. funded projects from 1966 through March, 1972, and development of instruments to collect data on the projects; 2. piloting of the instruments and training interviewers; 3. data gathering; 4. analysis of the data; and 5. writing the report.

Appropriate statistical procedures (including Chi Squares, Multiple Discriminant Analysis, Multiple Regression Analysis) were used to analyze the data.

The general findings were: 1. Most projects were housed in public schools (grades 9-12) serving more often than not, large rural or urban communities. 2. Most targeted populations were "regular" students, while disadvantaged and handicapped students were well represented. 3. Research, curriculum development, and training programs were the major foci of most projects. 4. The projects generally were considered to be successful in meeting most of the prime objectives. The directors were quite positive in this area. Teachers and materials were major contributors to meeting such goals. 5. Impact in educational practices tended to be limited to local geographic areas. Curriculum and instructional procedures were the areas in which the projects had the most influence. 6. The directors, students, and teachers were the major source of internal influence on decision making, while state governmental policies and community were the strongest positive sources of external influence.

among all the projects. Per unit cost, effectiveness of Vocational Education Advisory Councils, and length of projects had the least influence on outcomes. Not all factors had the same effect on all groups of projects. R.C.U. funding variables had an effect on changing attitudes, while internal and external influences affected educational practices, satisfaction generated, and goals reached.

Based on the data collected and analyzed, additional suggestions and recommendations were made. These suggestions were centered or the roles of project directors and R.C.U. Primarily it was suggested that directors better utilize internal and external sources of influence (e.g. parents, community, Vocational Educational Advisory Councils, students, etc.). The suggestion that the role of R.C.U. be expanded, in terms of greater interaction with projects during and after their funding, was made. A formal and systematic model for this interaction was developed in the report.

CHAPTER 1

OVERVIEW OF THE STUDY

Introduction

This document constitutes the final report to the Pennsylvania Research Coordinating Unit (R.C.U.) for Vocational-Technical and Continuing Education of research performed by the American Management Center (A. M. C.) to meet and fulfill the stated goals and requirements of R.C.U. project number 10-1050.

As indicated in the initial proposal submitted by A. M. C. , "few follow-up activities have been initiated to determine what happens once funding is over." It was for this express purpose, as well as to the question of impact, and factors affecting impact, that led to the development of a questionnaire-opinionnaire and a schedule for on-site interviews.

Procedures

The study was divided into five basic phases. The first phase (1) was conresind with: the careful identification of all R.C. U. funded projects conducted and omplited from 1966 through March, 1972; the identification and acquisition of a abitiole data, proposals, objectives, final reports (e.g., P.A.R.M.S., reports from other states, data available through the ERIC system, E.T.S., and Ohio State Center for Vocational and Technical Education, etc.) for the purpose of instrument development; and conferences with R.C.U. personnel, vocational education and industrial arts teachers, and experts in vocational education and industrial arts at the university level.

In addition, Phase 1 included the initial development of two instruments that complemented each other - yet focused on different concerns. The questionnaireopinionnaire (Appendix A) dealt with: impact questions, questions that were directly concerned with governmental (R.C.U., state, local, etc.) effects and interaction; general questions concerning the project and its structure and design; and demographic data collecting. A breakdown of questions by topic area is found in Table 1. The actual questionnaire had two major subdivisions - subdivision one (questions 1-26) was to be answered by all respondents; in addition those involved directly in training/educating students, adults, teachers or other professionals were to respond to subdivision two (questions 27-30). (Refer to Table 1.)

The major purpose of a site visit was to obtain additional information and to give the project personnel an opportunity to make comments and shace information and thoughts that may or may not be brought out by the questionnaire-opinionnaire. The interview schedule was designed only to complement the written instrument its intent was not to act as a substitute.

The schedule was so designed as to enable an interview to be completed within one to two hours. Specific directions for the interviewer were also included in the schedule. (The schedule appears in Appendix B of this final report.)

TABLE 1

Distribution of Questions by Topic Area in the Questionnaire-Opinionnaire Used in the Study

Topic Area	Question lNumbers	Total Number of Questions
Impact	$\begin{aligned} & 5,6,7,8,9,10,11 \\ & 12,13,14,15,28 \\ & 29,30 \end{aligned}$	14
Governmental Effects	$16,19,20,21$	4
General-Project Structure	$\begin{aligned} & 3,4,17,18,22,23 \\ & 24,25,26 \end{aligned}$	9
Demographic	1,2,27.	3
		30

The questions asked were: impact types (1,2), general-project structure $(3,4)$, governmental effects (5), (plus an informal question asked at the end of the interview) physical identification (6), and a "good and welfare" type response (7).

Phase 1 also included the up-dating of addresses. This was accomplished by telephone from the A. M. C. offices in Philadelphia. It became apparent that several of the projects would be difficult to locate for varied reasons:
a. The project director was no longer employed by the agency;
b. The project was of the nature that it was quite transient or had little structure (e.g., doctoral study);
c. The project was completed so long ago that its effects no longer exist and/or assessing its effects at this time would be meaningless;
d. The name of the director on the final report was the chief administrator who had little or nothing to do with the project;
e. The actual director could not be located anywhere;
f. The actual project could not be located, or
g. Duplication - the same project having two or more different project numbers.

In some cases one or more of the above factors played a part in making the up-dating of all addresses impossible. Despite the above difficulties, question-naires-opinionnaires were sent to the last known project address - in all 151 project numbers were included in the survey.

The initial instrument was piloted (in Phase 11) on several directors of projects for revision purposes. The instrument was revised several times, utilizing the varied input from teachers, directors, and university personnel. A conference was held on April 7, 1972 with several R.C.U. staff, including the R.C.U. Director, to allow for final revision before printing.

The identification and training of five interviewers to perform the interviews occurred during Phase 11. A stratified random selection of projects for on-site visitations was also completed. The projects were stratified according to vocational service areas and, where possible, by geographic regions. This was done to insure, to the best of our ability, representation of all service areas and geographic regions in the State. Because of the high cost of interviewing (travel, room, meals, etc.) all projects with funding below $\$ 1,000$ were excluded. It was concluded that more meaningful data could be collected from larger projects, and that the time, effort, and costs would mitigate interviewing directors of projects below $\$ 1,000$ total funding. Forty-five on-sitc visitations of projects was our goal. Because of time constraints and difficulty of locating older projects, it was difficult to guarantee a set figure for on-site visitation; however, each interviewer was given a listing of projects to contact in order to arrange for visitations. All interviewees were given a cut-off time by which they were requested to complete on-site visitations; this cut-off date was June 1st, 1972. The director of the project personally made on-site visitations to 19 projects, as well as interviewing key personnel in the Bureau of Vocational-Technical and Continuing Education in Harrisburg.

Phase III was designated the data gathering period. Printed instruments were sent to 151 projects funded by R.C. U. and completed by March, 1972. All mailings included self-addressed stamped envelopes to allow for ease of return. A return date of May 12th was established. Follow-up procedures included a second mailing (June 10th) to the non-respondents with an additional telephone reminder a week later. (Excluded were those projects from where an instrument had been returned to A. M. C. undelivered.) Phase II also included collecting data via the on-site visits. All interviewers returned completed interview schedules 24 hours after returning home, thus, all the interviews were completed by June 1st.

Because of the second mailing, Phase II was not completed until June 26 th. The last two phases - IV (data analysis) and V (writing the report) were started. Data analyses included frequency counts, percents, means, standard directions, multiple discriminant analysis, and multiple regression analysis. The functions of discriminant analysis was to determine whether various types of projects were different from others on selected factors. The regression analysis was used to determine which variable, or variables, appeared to be most significant in determining, influencing, or predicting selected factors (e.g. , success, influence, etc.).

Because of time constraints and significant cost factors, an in-depth study could not be considered in the design of this evaluation. The collection and analysis of in-depth census, economic, labor, and educational data in a r rnningful manner related to the intent of this study would take one to two years with a staff many times larger than the eight personnel involved in this study. The study consequently focused on the perceptions of individuals directly related to R.C. U. funded projects, with regard to the impact such projects have had on iheir areas of education and society. The collected data was analyzed using descriptive and inferential statistics to answer not only the questions concerning the "what" of impact, but also the "how".

CHAPTER :

THE NATURE OF THE PROJECTS FUNDED BY R.C.U.

In order to determine the types of instruments to be developed and used, A. M. C.'s participating personnel had to familiarize themselves with the types of programs funded by R.C.U. from 1966 through March, 1972. : A wide variety of projects were funded, however, the projects as reflected by the final reports (as found in The Pennsylvania's Abstracts of Research and Related Materials in Vocational Education, Volumes I, II) tended to fall into only a few major or general areas, in spite of the many index descriptors found under each listing.

Other final reports reviewed included, planning vocational education programs in Pennsylvania, guidelines for the use of labor ma:ket data, follow-up documents, V.E.M.I.S. reports, the state plan, and certain other supply demand documents. Those studies completed after Volume II were published (1972) as well; they appeared in listing with little description. A survey of the returned instruments and on-site visitation schedules from projects completed after the publication of Volume II of the P.A.R. M.S., indicated that the general areas for those studies were identical to the studies found in the P.A.R.M.S. Thus the nature of the projects in 1971-72 were not dissimilar to those that preceded them.

Each of the final reports found in the Pennsylvania's Abstracts of Research and Related Materials in Vocational Education (1969-1971) were read and studied and it was found that most projects (1966-1970) focused on one major area of intent. Thus each project could be placed within a general category. Many of the index descriptors found in the P.A.R.M.S. did not reflect the major emphasis of a project.

The general categories that were established are as follows:

1. Curriculum Development - Scope and Sequence and Guidance Programs, this area reflects a programmatic approach with ϵ mphasis on cognitive, psychomotor, or affective content.
2. Research - this would primarily be doctoral studies and/or theoretical projects in nature. Surveys would also fall into this category.
3. Material Development would house those projects that would focus on materials to be used. Curriculum materials would also fall within the scope of this category. Any project whose major concern is developing transportable materials (e.g., booklets, A-V materials, books, computer programs, tapes, etc.) was included in this area.
4. Training Programs - Teacher/Other Professionals - those projects that concerned themselves with teacher/other professional training, were included in this area. Pre-service and in-service programs were typically found in the category.
5. Training/Education of Students and/or Adults were those projects that were directly involved in "on-hands" programs with students and/or adults
(non-professionals). Here, the project's major focus was in tine immediate changing of the behavior (learning) of children, students, or adults, and they in turn comprised the major attention of the project.
6. Purchase and/or Updating of Equipment - is an area where the major purpose of the project was to acquire equipment. Although, at times, disguised under other objectives, it was quite easy to identify such projects.
7. Work Study - the traditional definition of work-study was used to include projects of this nature.

The general categories by year(s) of funding are found in Table 2. An analysis of the distribution of the types of projects funded indicate that earlier (1965,1966) funding cut across all areas, however, there was more emphasis on equipment and material oriented projects and less funding of curriculum and research projects than in the latter years. Training programs were also well represented. The more recent and/or longer (covering multiple years) projects tended to focus on: curriculum and guidance; research; and training programs.

All training programs (teacher/other professionals/students/adults) comprised the largest number of projects funded from 1966-1970-48 or 36% of the total number were training programs. Teacher and other professional training programs were funded more than any other type of projects (20%), curriculum and guidance projects were the next largest number funded (17%), followed by research projects (17%), then training programs for students/adults (15%), and materials development (11%), and equipment purchase (11%). Work study projects (9\%) were the least funded of the entire group.

It is also interesting to note that more projects were funced and/or recei ved initial funding in 1966 (56 or 42\%) than in any year between 1965-70. The year 1965 was the next largest year for project funding - 49 or 37% of the projects funded between 1965-70 were funded that year. It also appears that the year 1967 was the year with the least amount of projects funded for any 12 months period and/or initiated (only 3 projects were approved).

Because of a lack of description of those projects funded by R.C.U. between the years 1971 and 1972, it was decided to illustrate their distribution separately (refer to Table 3). It appears that training programs were not funded at the same rate as in previous years. In fact only 23% of the projects funded between 1971 and 1972 dealt with training and/or in-service programs. Conversely, curriculum development and research type projects were funded at a considerably higher rate -55%. When materials type projects are nierged with curriculum and research categories, the rate of funding of those types reaches a level of 78%. Purchase and up-dating equipment and work study programs were not funded in either year.

A comparison of the data appearing in Table 2 and 3, indicates that the emphasis of the funding (type) from 1965-70 to that of 1971-72 did change. Training programs comprised the largest number (48 or 36%) of projects funded in the former years, while curriculum and research projects comprised the largest number (17 or 55%) of projects funded in the latter years.

TABLE 2
THE NUMBER OF PROJECTS FUNDED (BY YEARS) WITHIN SEVEN GENERAL CATEGORIES'

$\begin{array}{cc} & \text { Cu } \\ \text { Years } \\ \text { S } \\ \text { rut }\end{array}$	Curr. Development Scope-Sequence And Guidance Programs	Research	Materials Development	Training Teacher/ other Professionals	TrainingStudents/ Adults	Purchass and/or updating Equipment	Work Study	Total
1965-66	2	3	6	6	4	8	1	30
1966-67	2	4	2	4	3	5	8	28
1965-67	1			2	1		1	5
1967-68				1				1
1966-68	3	4	1	1	4		1	14
1965-68	6	2	2	2	2			14
1968-69	1	3		4	3	1		12
1967-69			1	1				2
1966-69	6	1	1	2	4			14
1869-70	2	5	2	4				13
Total Percentage ${ }^{2}$	2 23.17\%	22.17\% ${ }^{3}$	16-11\%	27-20\%	21-15\%	$14.11 \%^{3}$	11.8\% ${ }^{3}$	133

1. Only those projects included in the Pennsy/vania's Abstracts of Research or Related Materials in Vocational Education (1969, 1971) appear in the above table. Projects funded after the dates indicated, but are a part of this study, do not appear above.
2. All percenteges are based on $N=133$
3. Rounded off to nearest percent

TABLE 3
THE NUMBER OF PROJECTS FUNDED (1971-72) WITHIN SEVEN GENERAL CATEGORIES ${ }^{1}$

Years	Curr. Development Scope-Sequence And Guidance Programs	Research	Materials Development	TrainingTeacherl other Professionals	TrainingStudental Adults	Purchase and/or updating Equipment	Work Study	Total
1970-71 (June)	3	2	3					8
1971-72 (June)	7	5	4	3	4			23
Total Percentage ${ }^{2}$	2 19.32\%3	7.23\% ${ }^{3}$	7.23\% ${ }^{3}$	3-10\% ${ }^{3}$	4-13\% ${ }^{3}$			31

1. Not all the projects included in the above table are in this study because their completion dates are after March, 1972.
2. Alf percentages are based on $N=31$
3. Rounded off to the nearest percent

TABLE 4
TOTAL NUMBER OF PROJECTS FUNDED (1965-72)
WITHIN SEVEN GENERAL CATEGORIES

Categories	Frequency	Percents
Curriculum Development, Scope-		
\quad Sequence and Guidance Programs	33	20
Research	29	18
Materials	22	13
Training-Teacher/Other Professionals	30	18
Training - Students/Adults	25	15
Purchase and/or Updating Equipment	14	9
Work Study	11	7
Total	164	100

When merging the data of Table 2 and 3 , it can be seen that (Table 4) one third of all the projects funded from 1965-72 were training programs. The distribution of funding among five of the seven categories was quite similar, but still not identical (ranging from 13 or 20% of the total). Purchase of equipment and work study programs were the least supported. They only accounted for 16% of the total number.

Although the funding patterns changed from 1965 to 1972 , the overall distribution appears to be balanced among five of the seven categories. It appears that the emphasis of the funding is on programs that could have greater generalizability (e.g. , curriculum, research, materials, training) to the field of vocational education than those with restrictive exportability (e.g., purchasing or equipment).

The above information is descriptive in nature. No inferences should be made concerning priorities of the R.C.U. and/or the State Department of Education during the period 1965-1972. The data might reflect the funding available to the State at that time, as well as the interests and concerns of those in the field (e.g. , during 1965-66 there might have been a greater demand from the field for equipment and training programs than for research and curriculum development).

CHAPTER 3

INTERDEPARTMENTAL RELATIONSHIPS

The relationship and impact that the R.C.U. has had with and upon the Bureau of Vocational Education was examined. Since the R.C.U. is a division within the Eureau of Research, it operates in a staff capacity for the Bureau of Vocational Education. Any office operating under such conditions must establish communication lines that are constantly open in order for it to operate effectively, and perform the staff functions for which it was charged.

In order to examine the nature of R. C. U.'s relationship and impact within the Bureau of Vocational Education, interviews were held between A. M. C. and key vocational education personnel. The vocational educators were asked to cooperate with the interviewers and were informed of the purpose of the study. Interviews were conducted with persons from trade and industrial education, business education, administrative and planning services, program operations, health occupations, distributive education, home economics and agriculture.

Generally, vocational educators view the operations of the R.C.U. very favorably. They felt that the staff was most professional, helpful, tactful, innovative and open with them. Only in one case were apprehensions voiced regarding the activities of the R.C.U.

Other favorable comments of persons interviewed related primarily to certain studies conducted by or under the auspices of the R.C.U. that have had major impact on vocational education programs at the state level. Reference was made to such studies as the Arnold report, follow-up studies, Vocational Education Information Network (V. E. I. N.) supply demand studies and the V. E. M. I. S. system.

The Arnold study provided the basis for reorganizing of both the Harrisburg and field staffs of the Vocational Education Bureau and provided the rationale for a comprehensive approach to the operation of Vocational education. The follow-up studies apparently led to the development of a Vocational Education Management Information System which is currently operational in the state. V. E.I.N. is a centralized information dissemination system that seems effective and is used by many bureau persons.

It was also stated that the R.C. U. provided certain data needed for the state plan for Vocational Education.

The apprehensive areas invulved a need for greater communications between the R.C.U., R.C.U. funded project personnel, and the Vocational Education Staff. The communications breakdown seems to result from a lack of adecuate staff to facilitate more interaction between the two agencies. This problern suggests that expanding the R.C.U. may provide enough people to facilitate greater communication channels.

It was determined that the R.C.U. did not attend departmental or division meetings within the Bureau of Vocational Education on a regular basis. Since
program concerns are discussed at departmental meetings, it may be advisable for the R.C.U. to attend these meetings in an effort to keep the communication lines open.

It was suggested that the R.C. U. should be funding more solicited research; that is, after determining research priorities, have school systems, private agencies, colleges, universities bid on performing specific research projects.

It appears that the R.C.U. uses many program specialists as consultants to assess incoming proposals. This does establish some lines of communications, but under such conditions, the communication tends to be very task directed. Where a large network of field representatives exist (e.g. agriculture), two-way interaction and communication appear to exist. However, in departments that tend to be one man (or woman) operations, the need for two-way communication is crucial. These people still have to meet the needs of the educational community, and are looking for support. They see the R.C. U. as an agency to supply some support to augment their rather restrictive interaction with the educational community. It appears that they would welcome more such interaction. These groups see R.C.U.'s function as providing them with greater information; in essence, R. C. U. might be functioning as field representatives for them, yet at a broader level. They were almost unanimous in their desire to be involved to a greater degree with R.C.U. research projects.

CHAPTER 4

DESCRIPTION OF THE PROJECTS

Response Rate

In order to make this descriptive study more meaningful, with results being used to describe the nature of the R.C.U. funded projects from 1965-1972, an adequate response rate had to be reached. Thus it was quite important for an effort to be made to insure a high rate of response.

Cover letters from key State personnel, second mailings, and personal phone calls were the devices used. The data on the nature of the response to the instrument, sent via the mails, is displayed in Table 5.

TABLE 5

CATEGORIES OF SURVEY RETURN

Categories	Number	Per Cent ${ }^{1}$
Returned "No forwardable address"	4	2.7
Returned "Unable to Respond"2	12	8.1
Returned "Usable for analysis"	98	66.7
Two time non-respondents	$\underline{33}$	$\underline{22.5}$
Total	147	100
Duplication of project numbers	$\underline{4}$	
	151^{3}	

${ }^{1}$ Based on an $\mathrm{N}=147$ because of duplication of project numbers
2 Generally the project director could not be located because: he/she was no longer employed; moved with no forwarding address; or was deceased
3 The initial mailing was 151

A total of 114 instruments were returned out of a total of 151 and the usable return rate reached a high of approximately 87%.

Given the nature of this project with the time-line of projects ranging from 1966 to March of 1972, the movement of staff personnel, changes in funding and directions over such a period, and unforeseen events that naturally occur over time, this rate of "usable instruments" was considered to be quite adequate.

The number of projects in the data analyses varies because not all questions were answered by all project directors, and/or not all questions were applicable
to all projects. Although the response rate is quite high, the reader is cautioned that this is a descriptive study of R.C. U. funded projects from 1965-1972, and that the data only reflects the 147 projects represented in this study. Inferences to all R.C.U. funded projects, or all projects funded by the Bureau of VocationalTechnical and Continuing Education should not be made.

Description of the Respondents

All data in this chapter was collected via the questionnaire-opinionnaire (Appendix A) and the schedule (Appendix B). Subsection titles are followed by identifying questionnaire-opinionnaire number ($\mathrm{Q}-\mathrm{O}$-) or schedule ($\mathrm{S}-$). Please refer to either Appendix A or B.

Length of the Project (derived from the R.C. U. numbers)
Of those who responded, 65 or 66.5% were one year projects, 12 or 12.2% were two years in length, and 21 or 21.3% were three years of duration. Thus it is apparent that the majority of the responses was generated by directors who spent only twelve months or less with a funded program.

Agency Operating Project (Q-O\#1)

Most projects were sponsored (were a part of) by a local public school system, while Area Vocational-Technical Schools and Universities or Colleges were the next largest sponsoring agencies (refer to Table 6) for programs.

TABLE 6
GROUP OR AGENCY OPERATING THE PROJECT

	f	$\%$
Local Public School System		
Area Vocational-Technical School	23	44.3
University/College	26	25.7
Non-Profit Private Organization	3	3.8
Other	0	3.2
	\leqslant	97
		10.0

Actually 68 or 70% of the programs were sponsored by public legal educational authorities (schools - elementary, secondary, and vocational-technical), while uni ersities only accounted for about 27% of the projects, other non-profit organizations accounted for the remaining 3%. It can be stated that for the population involved in this study, R.C. U. supported more public school projects than any other type.

Populations Seryed ($\mathrm{Q}-\mathrm{O}$ \#'2)

Respondents were asked to c'neck the appropriate description of the population concentration (rural, suburban, urban) and size of the geographic community served. (The reader should be aware that not all directors responded to all questions, hence the N in the different questions in this study will vary.)

Although urban projects (Table 7) were the mode (largest percent) of the population concentration, the total rural (non-Appalachia plus Appalachia) was next largest with 36.2%. Suburban population concentrations were the least served. It should be noted that there appeared to be quite an e ven distribution of projects among rural, suburban, and urban communities.

TABLE 7

JOPULATION AND GEOGRAPHIC COMMUNITY SERVED

Population Concentration			Size of the Community		
Type	f	\%	Size	f	\%
Rural (Non-Appalachia)	14	17.5	Over 100, 000	41	45.6
Rural (Appalachia)	15	18.7	50,000-100; 000	23	25.6
Suburban	20	25.0	25,000 - 49,999	13	14.4
Urban	31	38.8	10,000 - 24,999	7	7.8
			Under 10,000	6	6.6
Σ of those responding	80	100		90	100

The size of the communities served is quite different (Table 7); almost 46% of the projects served large communities - over 100,000 . With regionalization and unionization of school districts in Pennsylvania, the size of communities served by legal educational authorities tend to be large. This coupled with the growth of the population of the State are reflected in the distribution of the sizes of the communities served in this study.

Description of the targeted population(s) serviced by the projects was elicited. Table 8 shows the results. Projects' targeted populations were mostly regular students, with disadvantaged students forming the next targeted group. Because of multiple responding, some programs serviced more than one group.

TABLE 8
TARGETED POPULATION(S) OF PROJECTS

	791
Regular	44
Disadvantaged	19
Handicapped	

[^0]TABLE 9
EDUCATIONAL LEVEL SERVED BY THE PROJECTS

Level	\mathbf{f}^{1}
Pre-School	1
K-3 Grades	1
4-6 Grades	3
7-8 Grades	6
9-12 Grades (comprehensive)	51
Special Education	4
Area Vocational-Technical School 9-12	23
Post High School (non-college)	14
Community/Jr. College	3
College/University (4 year)	13
Graduate School	7
In-Service Training (non-college credit)	9

${ }^{1}$ Because of multiple responses, percents were not calculated

Projects also serviced different educational levels (refer to Table 9), including pre-school. The most prevalent grades served were $9-12$ grades (comprehensive and area vocational technical schools -- 74 projects). It is also interesting to note that post high school levels (non-college, graduate school, community college and college/university -- 37 projects) was the next largest level represented in this study. Programs for elementary level (K-6) were not common (4 projects).

Summary

Typically, the projects in this study were one year in duration, housed in public schools, serving either urban or rural areas with a large size population. They focus on regular students in grades 9-12.

Prime Administrator's Background (Q-O \#3)

The backgrounds of the prime administrators of the project were surveyed (refer to Table 10). It was found that almost all who responded were college graduates with advanced degrees, had spent almost 15 years teaching, and seven years as an administrator. It appears that they spent more years in the classroom than in non-educational positions. The large number of doctoral degrees is reflective of the number of research and university projects, as well as the fact that many in administrative positions in large school systems hāve such degrees.

TABLE 10

ADMINISTRATOR'S BACKGROUND

Type of Background	f	\%	Mean
Educational Level			
Non Degree	1	1.1	
B.S./B.A.	6	6.3	
M.S./M.A.	48	50.5	
Ed. D/Ph.D.	40	42.1	
	\leqslant	95	100
Years of Teaching			14.14 years
Years of Supervision/Administration			6.45 years
Years of Non-Educational Experience			5.16 years

Elements That Compose Projects (Q-Q\#4)

Most projects are made up of many elements, rather than being totally composed of one single thrust or effort. That is, a training program might include curriculum development, research, and materials development. In order to reflect the sundry parts of a project, a grid was developed to enable respondents to graphically, as well as quantitatively, describe their project. Another purpose of the grid was to keep the total of all the elements within a project to 100%. The subdivisions were: Curriculum development - scope and sequence/guidance; research; developing materials; training - teachers/other professionals; trainingstudents/adults; equipment-purchase and/or upgrading; and work study. The means of the percentages are found in Table 11. In each category there was at least one project that was totally composed of that area, and likewise there were projects that were completely devoid of that area.

TABLE 11
PERCENTAGE OF THE ELEMENTS THAT PROJECTS WERE COMPOSED OF (FOR THE RESPONSE GROUP ONLY) N=98

Elements	Mean Percents	Standard Deviation
Curriculum Development - Scope and		
Sequence/Guidance	17.74	24.17
Research	19.50	31.35
Developing Materials	14.62	20.93
Training - Teachers/Other Professionals	15.97	31.42
Training - Students/Adults	16.27	26.34
Equipment - Purchase and/or Upgrading	9.14	21.66
Work Study	10.95	28.68

TABLE 12
THE NUMBER OF PROJECTS BY ELEMENTS OF THE TOTAL

		Perce	tage of	Total	Projec						
Elements	$\begin{gathered} 0.10 \\ 1 \end{gathered}$	$\begin{gathered} 11.20 \\ f \\ \hline \end{gathered}$	$\begin{gathered} 21.30 \\ i \end{gathered}$	$31 \cdot 40$	41.50 1	51.60	$\begin{gathered} 61.70 \\ i \end{gathered}$	$\begin{gathered} 71 \cdot 80 \\ i \end{gathered}$	$\begin{gathered} 81 \cdot 00 \\ ? \end{gathered}$	$\begin{gathered} 91.100 \\ f \end{gathered}$	Mean Percents
Curriculum Development											
Scope and Sequence/Guidance	56	11	12	10	2	0	1	2	0	4	17.74
Research	63	13	2	3	6	0	0	0	2	9	19.50
Developing Materials	64	8	11	6	4	2	1	0	0	2	14.62
Training-teachers/											
other Professionals	75	3	6	1	0	0	1	2	1	9	15.97
Training-Students/Adults	67	4	6	2	7	4	1	5	1	1	16.27
Equipment-Purchase											
and/or Upgrading	81	8	0	2	1	0	2	1	1	2	9.14
Work Study	84	1	0	1	2	0	0	1	1	7	10.95

It is quite evident that in all the projects ($\mathrm{N}=98$), research comprised the largest block of effort (19.50%), with curriculum development the next largest (17.74%), followed by training - students/adults (16.27\%) and training - teachers/ other professionals (15.97%). Since these are means of the percentage of the elements of the projects, they represent the "typicalness" of the 98 projects. Thus it can be deduced that the projects of this study were compaeed of and represented many elements (curriculum, research, developing materials, and training). It is equally evident that equipment and work study did not represent large elements within the structure of the projects. The results also reflected the basic nature of the funding as found in Tables 2,3, and 4.

The actual number of projects broken down by percents of elements of the total effort can be found in Table 12. Multiple responses are reflected in the distribution, hence totals would have little meaning and are not found in the Tables. A survey of the distributions indicates that the high mean for research was generated by the large number of projects (11) that was composed mostly of research activities $(81-100 \%$ of the project). It would also appear that curriculum development was the most common element found in the projects. This is not surprising once research is held constant, since research projects tend to be quite directed and are generally not made up of the other elements listed. This situation is not usually true for other types of projects; as an example, training programs might be made up of curriculum development, material development, and research, etc.

Summary

The projects in this study have tended to be directed by highly educated personnel who have spent more years in teaching and supervision/administration than in non-educational experiences. These directors have dealt with projects that focus primarily on research, curriculum development-scope and sequence/guidance, and training (students/adults/teachers). Curriculum development efforts appear to be the most common element found in the projects.

Objectives Met (Q-O\#5)

Respondents were asked to list the prime objectives of the project (as indicated in the proposal of their project) and to rate on a five point scale (1-not at all; 2 -very little; 3 -somewhat; 4 -considerably; 5 -objectives were totally met) to what extent they were met.

In order to consider the effects of meeting multiple objectives, and to give such projects credit for meeting more than one objective, a transformation of the mean scaling was used. The mean of the ratings was calculated, then a ratio of number of objectives to the mean of the ratings was determined. Although this transformation tended to slightly depress the scale ratings, it did give credit for meeting multiple responses. No attempt was made to qualify the primary objectives; i. e., to assess qualifiably that meeting a particular objective was more significant than meeting any other, or combination of other objectives.

Objectives were also categorized into six general areas; administrative; program (curriculum); student directed; teacher/staff; materials; and an area
titled other. Table 13 illustrates the breakdown by classifications of the objectives. Table 14 contains the irequency of multiple listings and the mean of the transformed ratings.

TABLE 13
NUMBER OF PRIME OBJECTIVES BY GENERAL AREAS

General Areas	f	$\%$
Administrative	2	0.2
Program (Curriculum)	113	36.8
Student Directed	42	13.6
Teacher/Staff	15	4.9
Materials	30	9.7
Other	107	34.8
	\leqslant	307

TABLE 14
NUMBER OF MULTIPLE FRIME OBJECTIVES LISTED

Number of Objective	rime	Number f	$\begin{aligned} & \text { Responded } \\ & \% \end{aligned}$
One only		24	26.1
Two		15	16.3
Three		11	11.9
Four		16	17.3
Five		7	7.6
Six		10	10.8
Seven		9	10.0
		92	100
Mean of transformed scale			4.26

It is apparent that program objectives (36.8\%) were the most noted, with "other" objectives (34.8%) being the second largest classification. Student directed objectives (objectives dealing specifically with students) was the third largest group (13.6%) listed.

The majority of respondents listed more than one objective as being met. In fact, almost 46% of the respondents listed from two to four prime objectives. Only 26.1% listed one objective as being met. The mean of the transformed scale was
4.26. This was just over the 4.00 scale (indicating that the prime objectives were met at the high end of the scale). As indicated earlier, the transformation tended to depress the actual scale, thus it could be concluded that the respondents felt that they generally met the prime objectives of their projects.

Unexpected Outcome (Q-O\#6)

Respondents were asked to list unexpected outcomes (refer to Table 15) and rate them as either negative (0) or positive (1). Again the outcomes were classified, a transformed rating for each project was derived (as above) for further analyses, and frequency of multiple listings were calculated (Table 16).

TABLE 15
NUMBER OF UNEXPECTED OUTCOMES BY GENERAL AREAS

General Areas	f	$\%$
Administrative	3	2.3
Program (Curriculum)	19	14.6
Student Directed	32	24.6
Teacher/Staff	17	13.1
Materials	2	1.5
Other	57	43.9
	ε	130

TABLE 16
NUMBER OF MULTIPLE OUTCOMES LISTED

Number of Outcomes Listed	Number f	Responded $\%$
One Only	20	34.5
Two	20	34.5
Three	10	17.2
Four	3	5.1
Five	5	8.7
Six	0	0.0
Seven	0	0.0
		58
		95
		35
	Positive Ratings	
Megative Ratings		

Fewer urexpected outcomes were listed than prime objectives with Other category comprising the largest group of responses (43.9%). Student directed outcomes were the next largest (24.6%) indicated. Fewer multiple responses were also listed. Sixty-nine percent listed only one or two outcomes. It would indicate that unexpected outcomes were rather unusual in their projects. A mean of 0.730 was reached. This mean reflected the listing of positive responses (195) than negative ones (35).

Major Factors Contributing and Hindering Projects (Q-O\#7)

An attempt was made to determine the major factors (or elements) that contributed most (Table 17) to the success of the project, and those major factors (or elements) that hindered the director in meeting the goals of the project (Table 18). Directors were asked to give their perceptions as to the contributing and hindering elements.

TABLE 17
MAJOR FACTORS CONTRIBUTING TO MEETING GOALS OF THE PROJECT

Factors	f	Mean 1
Administration	23	3.30
Program (Curriculum)	20	3.85
Student Directed	30	3.46
Teacher/Staff	49	4.06
Materials	8	4.00
Others	$\underline{81}$	3.91
	$\leqslant \frac{211}{}$	

${ }^{1}$ Based on 5: most significant contributor to 1 : least significant. Not transformed means.

TABLE 18
MAJOR FACTORS HINDERING THE MEETING OF GOALS OF THE PROJECT

Factors	f	Mean 1
Administration	4	4.75
Program (Curriculum)	12	4.16
Student Directed	12	3.83
Teacher/Staff	15	4.33
Materials	17	4.17
Others	$\frac{58}{118}$	4.32
	\leqslant	

1Based on 5: most significant hinderer to 1 : least significant hinderers. Not transformed means.

It appears that teacher/staff (4.06) contributes more to the success of the program than do other factors listed and categorized. Materials (4.00) was the next prized, although it was rarely listed, the "other" category appears to be the most prevalent one. More contributors (211) were listed than hinderers (118). Administration (4.75) appears to be the most significant hindrance in meeting the goals of the project. Factors listed as "others" (4.32) appears to be the next contributor to not meeting goals. It also appears that the respondents are much more definite in their feelings about those who interfere with meeting goals than with those who contribute to meeting goals.

Summary

Objectives of programs were categorized into six general areas. It was found that directors felt the prime objectives of projects were met, and that program type objectives were the most noted in this study. Also most directors listed more than one primary objective met by the project. Unexpected outcomes were also listed. Although fewer in number than prime objectives, the directors had similar positive feelings about the unexpected outcomes as they did about the objectives. Teachers/staff appeared to contribute most to the project, while administration appeared to hinder the project. There appeared to be more contributors than distractors, although directors appeared to be more definite about the distractors (e.g. rated the factors as being more significant or higher in their role as distractors than the ratings given those factors as contributors).

Impact on Educational Practices (Q-O\#8)
One way to assess impact is to evaluate the effects such projects have on educational practices. Directors were asked to rate the impact using a seven point scale (7-Extreme Positive Influence; 6 - Very Positive; 5-Had Some Positive Influence; 4 - No Influence; 3 - Had Some Negative Influence; 2 - Very Negative Influence; 1 - Extreme Negative Influence). The data is shown in Table 19.

TABLE 19
INFLUENCE ON EDUCATIONAL PRACTICES AT SELECTED LEVELS

Levels	No. Responding	Mean
Building or Neighborhood		
Local Community and/or District	69	5.85
County/Intermediate Unit	77	5.85
State	65	5.01
National	72	5.08
\quad Global Rating	$\underline{55}$	$\underline{4.54}$
		5.28

It can be seen that at the local levels (building, neighborhood, community), the directors felt that they had positive to very positive influence, while at the County and State they had some positive influence. They felt they had little influence at the national level. This can be explained in the nature of R.C. U. funding throughout the nation. R.C.U. funding is distributed via State Departments of Education, consequently programs are locally oriented rather than State, and rarely are national in scope. The low ratings at the national level could also be a factor of the lack of wide dissemination of information about projects.

Identification of Examples of Impact (Q-O \#9)

Directors were also requested to identify specific examples of how they could determine their project's influence(s) and at what level(s) such examples were felt. The number of responses of specific examples X levels is found in Table 20. Many examples were listed (888), most of which were at the local level (Building district) very few were at the county (105), state (96), or national level (35). Curriculum (138), instructional (126) and counseling (118) procedures were most numerous. Educational policies (99) and reduced dropout rate (85) were the next largest numbers cited by the directors. Again it is apparent that the nature of the R.C. U. funding for instructional purposes at the local level was a factor in the results. It is significant to note that revised educational policies (99) and revised administrative policies (72) were noted as examples. This might indicate subsequent, or ripple effect, of the projects - that is, as a consequence of projects, current practices were altered.

Summary

The results indicate that R.C.U. funded projects had definite and positive influence on educational practices - but more so on the local level than in the county, state, or national level. It was also apparent that the effects of such projects were felt in classroom related activities (e.g. curriculum, instructional procedures) rather than in non-educationally related activities.

Influencers On Decision Making (Q-O\#10)

Directors were asked to rate, on a seven point scale (7-Extreme positive influence;... 4-No irfluence;... 1-Extreme negative influence), sources of influences that affected their decisions. Global mean $(\overline{\mathrm{X}})$ ratings for internal and external influence (refer to Table 21) were also calculated for subsequent analyses.

Directors felt that internal influences ($\bar{X}=4.96$) were stronger in decision making than were external influences ($\bar{X}=4.32$). It is interesting to note that directors felt themselves as being the strongest source of influence ($\bar{X}=6.03$) with students ($\overline{\mathrm{X}}=5.66$), professional staff ($\overline{\mathrm{X}}=5.55$), and immediate supervisor ($\overline{\mathrm{X}}=5.31$), in that order, having some positive influence. School boards policies approached positive influence ($\overline{\mathrm{X}}=4.84$); while unicns showed no influence. Restrictions of the proposal and secretaries approach neutrality, but on the negative side of the scale.

TABLE 20

NUMBER OF EXAMPLES $\overline{\mathbf{x}}$ LEVEL WHERE INFLUENCES WERE FELT

Specific Examples	Totals	Level Where The Influence Was Felt				
		Building/ Naighbor. hood	$\begin{aligned} & \text { Local/ } \\ & \text { Dist. } \end{aligned}$	Intermediate univ County	State	Nationa!
New or revised curriculum	138	40	54	16	22	6
Classroom/shop instructional procedures	126	42	52	13	16	3
New or revised educational policies	99	27	43	9	13	7
New or revised administrative policies	72	24	35	4	7	2
New or revised counseling/guidance procedures	118	33	51	13	17	4
Changes in employment patterns	59	20	30	5	3	1
Decreased unemployment rates	56	18	25	9	2	2
Decrease in the number on welfare	35	11	13	7	2	2
Reduced dropout rate of your targeted population	85	30	39	12	2	2
Remain, or initial selection, in the area for which the targeted population was trained	47	18	19	7	2	1
Teachers/other professionals received certificates	21	6	7	4	4	0
Others	32	4	11	6	6	5
Totals	888	273	379	105	96	35

TABL.E 21

SOURCES OF INFLUENCE ON DECISION MAKING

Sources	Means	
A. Internal Influence		
Professional staff/faculty	5.55	
Students	5.66	
Secretaries	3.91	Global Mean $=4.96$
Unions	4.04	
School Board or University policies	4.84	
Restriction of the proposal	3.86	
Your immediate supervisor	5.31	
Yourself	6.03	
B. External Influence		
Parents	4.06	
Unions	4.09	
Community	4.91	
Local government policies	4.49	Global Mean $=4.32$
State governmental policies	4.65	Global Mean $=4.32$
U.S. governmental policies	4.37	
Political parties	3.70	
Pressure groups	3.77	

Although parent ($\bar{X}=4.60$) community ($\bar{X}=4.91$) and State government policies ($\bar{X}=4.65$) approached some positive influence, the directors viewed the external influences as being rather neutral. Political parties ($\bar{X}=3.70$) and pressure groups $(\bar{X}=3.77$) were on the negative side of the neutral point.

It is apparent that those closest to the project (professional staff, students, immediate supervisors, the director himself, parents, community, state governmental policies) had more influence on decision making than those outside the direct contact of the project.

Dissemination of the Project (Q-O\#11)

It appears that final reports are the most prevalent technique for disseminating the results of the project (Table 22). Word-of-mouth is the next largest technique used to communicate with those not in the project. Thus it appears that aside from the final report, verbal means of communication (speeches, word-ofmouth) is the technique used to disseminate information about projects. It should be noted that all R.C.U. funded projects require a final report. The large number of publications might be a result of the university/college based projects, where directors traditionally write articles for journals. The use of in-service training after the project (29) indicates that the results are again having a ripple effect and would be in keeping with response indicating effects on educational practices.

TABLE 22
MEANS OF DISSEMINATING THE RESULTS OF THE PROJECT

Type	f
Final report	79
In-service training (after the project)	29
Publications (books)	15
Publications (articles)	36
Sneeches and papers given at conferences	50
Speeches to local groups	45
Word-of-mouth	66
Others	20

Permanent Part of Programs (Q-O\#12)

Whether the results of the projects became a permanent part of programs or policies was surveyed (Table 23) in this study. Although more responded in the negative (204) rather than positive (152), the negative results were generated by the limited effects the projects had at the county, state, and national levels. The university/college responses were generated by the uniqueness of university directed projects that tend to focus outside the institution. It appears that the results did become a permanent part of school building and school district programs or policies. Thus it can be concluded that the projects funded by R.C.U. have a good probability of becoming change agents, as time passes, at the local level - but not at the county, state, or national level.

TABLE 23

PERMANENT PART OF PROGRAMS - DID THE RESULTS BECOME A PART OF PROGRAMS OR POLICIES?

Source		Ber me a Part?	
School building	Yes	55	No
School district	Yes	55	No
County/Intermediate	Yes	15	No 22
State	Yes	14	No
National	No	40	
University/college	Yes	40	No
	Yes	40	

Summary

Internal influence appears to be stronger on decision making than external influences, and the directors themselves, are the strongest influences.

Directors usually use verbal communication to disseminate the results of their projects (mostly one-to-one communication).

The ripple effect does appear to exist for the projects; in that, the results of the projects tend to become a part of the programs on policies of local school districts. However, this effect appears to be limited to only local districts, not even to county or intermediate levels.

Satisfaction Generated (Q-O\#13), Attitude Changes (Q-O\#14)n Ultimate Outcomes (Q-0.\#15)

The assessment of the degree of satisfaction generated by the program within selected interested groups was undertaken (Table 24) on a five point scale (1-No Satisfaction. . . 3-Satisfied... 5-Highly satisfied; 6-Not applicable was treated as a no response).

TABLE 24

SATISFACTION GENERATED BY THE PROJECT

Groups	Mean Ratings
Trainees	
Participants other than trainees (e.g. , staff)	4.01
School building personnel	4.01
School system	3.86
County System/Intermediate Unit	4.07
R. C. U.	3.69
State Department of Education (other than R.C.U.)	3.31

The highest ratings (very satisfied) were generated within those closest to the projects - trainees, staff, school system, etc. It seems that directors perceived R.C.U. to be satisfied with their projects, but not as satisfied as other personnel (including State Department of Education). This might be generated by a lack of feed-back from R.C.U. on the status and ultimate outcome of funded projects. Dissatisfaction apparently was not perceived by the directors to be the feeling of the groups listed.

Changes in attitudes of those who participated in projects were also surveyed. The scale was again five points with...1-representing considerable negative changes. . 3 - No change... 5 -Considerable positive change (Table 25).

Generally there was slight positive changes towards all selected areas with the exceptions being Other (peers and non-peers). The peer relationship exhibited almost no change at all, and the non-peer relationship was between some negative change and no change. It appears that projects had slight positive effects on attitudes of participants towards the project, and vocational education. It did appear to generate positive self-image changes, but not positive changes towards others.

TARLE 25

attitude Changes of participants toward selected areas

Selected Areas	Mean Change
Purpose or thrust of the project	3.55
Voc. Ed. in General	3.55
Education in General	3.13
The World of Work	3.32
Themselves (the Participants)	3.80
Others (Peers)	2.95
Others (Non-Peers)	2.55
\quad Global Rating	3.26

In general terms, the directors were asked to rate the ultimate effects the project had on students or targeted population. A five point scale was again used (1-No effect. . . 3-Some effect. . . 5-Major effect). The mean reached was 3.80. This indicates that directors felt the projects' effects on targeted populations approached the considerable effect (4) level.

Summary

It is clear that the projects generated satisfaction among interested groups and had considerable effect on the targeted populations. The projects did not generate changes in attitudes (positive or negative) towards selected areas among the participants or targeted populations of the projects.

Monies Allocated (Q-O\#16). Sources of Funding (Q-O\#17), and Per Unit Costs (Q-0\#18).

The project directors were asked to indicate the total cost of operating the project (includes: R.C. U. funding; other state, federal, and local funding). The range of total funding was from $\$ 298,000$ to $\$ 400.00$ with the mean being $\$ 79,909.64$. The range for R.C. U. funding veas from $\$ 253,904$ to $\$ 217.00$, with a mean of $\$ 44,568$. It should also be noted, that in our on-site visitations, it became apparent that many directors were not able to identify their sources of funding, hence they were not able to break down their total budget sources. It is apparent that R.C. U. funding does account for a significant amount of the funding of the projects but by no means does it account for all of the funding. Local self help and other funding are also part of the effort. The total cost of operating the projects (where indicated) was $\$ 6,073,132.80$; the total R.C.U. funding received (where indicated) was $\$ 3,342,609.00$.

When adequacy of R.C.U. funding was assessed, the directors felt that the R.C.U. funding was close to, but did not reach, the "somewhat adequate" level. The mean was S .90 on a five point scale of 1 - not adequate at all, 2 - not very adequate, and 5 -extremely adequate.

The results are not surprising, since it is rare to find projects where directors feel the degree of funding is adequate.

Directors were also asked to indicate what they would have done with additional funding that they were not able to do with the funding received. The results are found in Table 26. Responses were categorized into six general areas.

TABLE 26
WHERE ADDITIONAL FUNDING WOULD BE SPENT

General Areas	f
Administrative	2
Program (Curriculum)	21
Students	4
Teachers/Staff	11
Materials	24
Other Areas	34

Project directors would have distributed additional monies, if they were available, among many areas ("other areas" - 34). However, within the specified areas, the directors would have invested in materials (24) and on the program (21). Additional staffing appeared to be the third specific area (teachers/staff -11). Student and administrative areas were not highly selected by the directors for spending additional monies.

Sources of funding besides R.C. U. was requested (Table 27). It appears that the major source for the projects, aside from R.C. U. , are school budgets (59), with other State funding being the next largest source (12). It is also interesting to note that 18 of those responding to the question indicated that R.C.U. was the sole funding source. It should also he noted that many projects had multiple funding beside R.C. U. monies (e.g. school budget U.S.O.E. and O.E.O). This is consistent with the differences found in the total funding and R.C.U. funding amounts.

Fifty-one directors were able to estimate the per unit costs of their projects, while six indicated they could not estimate the cost, four indicated the question doesn't apply to them, and the rest (37) did not respond.

They were asked to list the units within projects and to indicate their costs. Many projects trained individuals, produced materials, and completed a study thus projects would have multiple listing. The per unit costs across the fifty-one projects were totaled and a mean was calculated. The mean per unit costs for all units listed was $\$ 1,806.78$. Thus it cost almost two thousand dollars, on the average, to train a student, produce a curriculum material, or complete a study.

It is also interesting to note that only 52% of the directors responded to the request for per unit costs - one might assume that the other 48% could not readily

TABLE 27

ADDITIONAL SOURCES OF FUNDING OF PROJECTS

Sources	f
None	18
School Budget	59
Local Government	5
State - other than R. C. U.	12
Private Industry	6
U.S. Office of Education	8
Office of Economic Opportunity	2
Other U.S. Funding	2
Foundations	2

determine the amount because of the time span of this study (1965-1972); or they could not determine the amount because they don't have the information. The per unit costs within a project was tutaled and averaged (the average per unit cost per project), these averages were then totaled and averaged - the final figure determined was $\$ 948.74$. Typically, where responses were given, the average project spent about one thousand dollars on the unit items within the project. Because the average per unit cost per project reflects what individual projects spent, it was used in further analyses.

Summary

R.C. U. funding was considerod to be slightly below the adequate level by the directors. If additional funds were available, directors would spend them generally on materials and program development. School budgets appear to be the major additional source of funding, besides R.C.U., for projects in the local school budget. It would seem that the average per unit cost within each project supplying the information is slightly less than $\$ 1,000$.

Influence (Q-O\#19), Assistance (Q-O\#20), R.C. U. Interaction Desired (Q-O\#21).
To what extent did others, besides the director, influence the creation of a propesal was investigated by the instrument (Table 28). Based on a five point scale (1-Had no influence... 3-Had some influence. . 5 - Extremely influential), it appears that the R.C. U. and local Vocational Educational personnel were the most influential of those listed in creating the proposals (3.45 and 3.27 respectively). It should be noted that none of the groups listed appeared to be very influential. R.C.U. approached the level of having significant influence. State Department of Education and Teacher Education Institutions had the same degree of influence (2.76) on creating proposals.

TABLE 28

IN:FLUENCE ON CREATING THE PROPOSAL

Source	Mean
R. C. U.	3.45
State Department of Education (Non- Voc. Ed. Div.)	1.82
State Department of Education (Voc. Ed. Div.)	2.76
County level Vocational Education Personnel	2.33
Local Vocational Education Personnel	3.27
School Building Personnel	2.69
School District Personnel	2.91
Teacher Education Institution	2.76

The degree of assistance received from selected sources was also surveyed (Table 29); in addition requests for assistance from the sources was also questioned. A four point scale (1 - No assistance. . . 4-Considerable assistance) was used to assess the degree of assistance received during the project.

TABLE 29
ASSISTANCE RECEIVED DURING PROJECT

Source	Mean Rating	Request for Yes	Assistance No
R. C. U.	3.03	58	24
State Department of Education	2.56	39	44
(Vocational Education)			
State Department of Education	1.62	21	58
(Non-Vocational Education)			
County Educational Personnel	1.89	29	49
District Personnel	1.39	45	35
School Building Personnel	2.48	43	
Teacher Education Institutions	2.18	31	48
Global	2.24	237	292

The R.C. U. appeared to give the most assistance to project directors (3.03"Some assistance"). State Department of Education (Vocational Education) assistance (2.56) received the second highest rating - its rating approached the "some assistance" level, followed by school building personnel (2.48). District personnel evidently gave the least amount of assistance to the directors. It should be noted that the R. C. U. and Vocational Education (State Department) received many requests for assistance (and evidently gave it), while district personnel also received many requests for assistance and either didn't give it and/or the level of assistance
given was inadequate. It also is apparent that assistance was not always requested by project directors.

To what extent should R.C.U. provide interaction (assumes assisting projects) after funding has been approved was considered (Table 30).

TABLE 30
R.C.U. INTERACTION AFTER FUNDING APPROVAL

Value	Degree of Interaction	f
(1) \quadNo interaction between R.C. U. and the project after funding has been approved.	2	
(2)There should only be slight interaction between R.C. U. and the project after funding has been approved.	6	
(3)There should be some interaction between R. C. U. and the project after funding has been approved.	35	
(4)There should be considerable interaction between R.C.U.		
(5)and the project after funding has been approved. the project after funding has been approved.	34	

$$
\text { Mean - } 3.48
$$

The results indicate that, of those who responded to the question ($\mathrm{N}=87$), most believe that from some to considerable interaction should take place. Actually 44 of the 87 respondents believed thece should be considerable to constant interaction. There is no question that the directors welcome R.C.U. interaction after funding.

Summary

R.C. U. personnel were the most influential in creating proposals funded and studied in this project. The State Department of Education (Vocational Education Division) also gave valuable assistance to the project directors.
R.C. U. interaction would be welcomed after funding approval by the directors, this was assumed to imply that R. C. U. would provide assistance to the project directors. However, expansion of R.C.U. personnel and facilities will be required to achieve the above stated objective and to provide personal attention to each project.

Other General Questions (Q-O \#22, 23, 24, 25, 26)

Most directors (65 or 71.4% of those responding to the question) felt that their projects, as they were designed, should be repeated (Q-O \#22). Most of those
responding negatively would repeat the project if it were to be significantly redesigned. Open-ended responses to the question were difficult to categorize, thus were not included in this report (all responses, however, will be given to R. C. U. for their use). Out of the 91 who did respond 88 gave reasons why they responded to question \#22a; 65 also gave examples of what they would do differently (including "nothing") if their project were to be repeated as designed. Twenty-eight (out of 32 who indicated that they would repeat a significantly redesigned project) listed changes. Sixteen out of the twenty (who would not repeat a redesigned project) indicated their reasons for such a decision.

The vast majority of directors (84 or 92.3% of those responding to question(Q-O \#23) felt that their agency (or institution) was the most appropriate one for the project. Of those who felt their agency was inappropriate, four would have had a school system perform the project, one would have had a university/college sponsor the project, and two listed "other".

Career advancement for the project director, as a consequence of the project, was investigated (Q-O \#24). The results are displayed in Table 31.

TABLE 31
PROJECT DIRECTOR'S CAREER ADVANCEMENT
AS A RESULT OF THE PROJECT

Career Advancement	f
Nothing	41
Received an advanced degree	6
Was promoted	8
Received certification	3
Given other projects to develop	30
Given administrative duties of	
position not held before the	
project (but not promoted)	15
Other	15

It seems that project directors were inclined to continue on in their capacity and/or were given other projects to develop. Only eight indicater that they were promoted as a result of the project they directed. Fifteen indicated that a horizontal move was made as a result of the project. It would appear that, in terms of promotion, the route of directing a project is not the approach to take.

Local Vocational Education Advisory Councils are quite common, yet the project directors did not (or were not able to) use them often in their projects (refer to Table 32). When they were used, the directors found them to be effective.

TABLE 32
LOCAL VOCATIONAL EDUCATION ADVISORY COUNCIL USE AND EFFECTIVENESS

Usage		f	
	None of the time	34	
(2)	Very little	9	
(3)	At times	24	
(4)	A good bit of the time	19	
(5)	A considerable amount of the time	6	Mean $=2.50$
Effectiveness			
(1)	Was not effective at all	1	
(2)	Had very little effect	5	
(3)	Had some effect	25	
(4)	Considerable effect	13	
(5)	Highly effective	11	
	\leqslant	55	Mean $=3.51$

Of those who responded to the question on internal and external evaluations (Q-O\#26), 54.1% or 46 indicated that the project had an internal evaluation. Thirtyfour or 73.9% of the 46 indicated that a report was available.

Only 25 or 29.4% of those responding indicated that an external evaluation was completed, with 14 indjecating that a report of the evaluation was available.

If one were to include all 98 projects in this particular analysis, it is apparent that only 46.9% of the projects in this study were internally evaluated, and only 25.4% had an external evaluation.

With educational and fiscal accountability existing today, such low figures appear to be quite surprising. Again this points out a need for more R.C.U. interaction with the projects in terms of: making sure that an evaluation component is part of initial proposals; seeing to it that evaluations are performed during the life of the prcject; and making sure that follow up evaluations are made by R.C.U. R.C. U. should also make sure that both internal and external evaluation are made.

Only those involved in training programs were asked to respond to questions $27,28,29$, and 30 of the instrument.

Numbers and Types involved in Training (Q-O\#27)

Not all projects were involved in training programs; however, out of the 98 projects participating in this study, 60 or 61.2% indicated that they were directly invoived in some type of training program. Fifteen projects exclusively trained

TABLE 33

NUMBERS AND MEANS OF ETHNIC GROUP TRAINEES INVOLVED IN 60 TRAINING PROGRAMS

Ethnic Groups	Students (Up to 18 years of age)			Adults (Over 18 years)			Teachers/Other Professional Staff			Grand Total
	Total	Mean	Maximum Served by eny one group	Total	Mean	Maximum Served by any one group	Totel		Maximum Served by any one group	
American Indians	89	1.48	89	0	0.0	0	10	0.17	10	99
Blacks	1,426	23.77	491	55	0.92	30	240	4.00	126	1,721
Puerto Ricans	0	0.0	0	0	0.0	0	3	0.05	3	3
Whites	12,438	207.30	5,000	441	7.46	175	2,037	33.95	990	14,916
Orientals	137	2.28	135	0	0.0	0	10	0.17	10	174
Others	3,624	60.40	3,000	825	13.98	600	1,624	27.07	650	6,073
Totals	17,714	295.23	5,000	1,321	22.02	600	3,924	65.40	990	22,959

students, one exclusively trained adults, and nineteen trained teachers only. Two projects trajned all three groups, seventeen trained teachers plus students, two trained students and adults, and four trained teachers and adults. Using 60 as a base, the average number for each ethnic group of students, adults, and teachers were computed (refer to Table 33) to indicate the typicalness of the training programs found in this study.

The 60 programs in this study typically trained white children, adults, and teachers. Minorities (Blacks, Puerto Ricans, American Indians, and Orientals) were not well represented in the training programs. The number of Puerto Ricans were almost non-existent. They were much lower than American Indians and Orientals in the sample. They might have been represented in the "others" category, however, their ethnic identity has been established in our society, and the project directors should have had this information - If indeed they had been considered as "others". Only 7.5% of the trainees were identified by the project directors as Blacks. This is also a considerably low representation in the sample. Again Blacks might have been counted along with Puerto Ricans in the "others" category. Inspection of Table 33 also shows that the "other" category has been affected by large singular programs $(3,000,600,650)$, which indicates that it represents primarily these programs and is not made up of input from many programs.

Whites make up 70.2% of the students, 33.4% of the adults, 51.9% of the teachers/other professionals and 64.9% of the total when "others" category is included in the calculation. However, when the "others" category is excluded from the calculation and subtracted from the totals, the percentages change considerably Whites then comprised 88.3% of the students, 88.9% of the adults, 88.5% of the teachers/other professionals and 87.8% of the total.

If one can agree that the "others" category includes all those not included in the categories listed, then one can assume that when comparing the number of Whites to the numbers of American Indians, Blacks, Puerto Ricans, and Orientals, the inbalance which is in favor of Whites trained, is even greater than when comparing Whites to all groups.

The programs typically trained more students (77.6\%) than teachers (16.6\%) or adults (5.8\%) although there were approximately an equal number or programs that exclusively trained students/adults and ieachers, it would be expected that the numbers of participants would be inbalanced. Totally, there were 22,959 trainees broken down as follows: 0.4% American Indian; 7.5\% Blacks; 0.01\% Puerto Rican; 64.9% White; 0.6% Oriental; and 26.6% classified as "others". As indicated above, if the "others" category was excluded from all the calculations, the percentages for all remaining classifications would rise, but the percentage for the White classification would jump from 64.9% to 87.8%, while the percentage for Blacks would rise from 7.5% to 10.2%.

With the distributions of minoritjes found in the State of Pennsylvania, the percentages found in this study appear not to be representative of the minorities. Again the reader should be cautioned that the "others" category tends to be confounding the data, and that the minority trainees might be imbedded in that classification.

It is also interesting to note that 45% of the training programs indicated that the total cost of operating their projects was $\$ 3,035,868.13$; an average of the 45 programs being $\$ 67,463.73$. In addition, 45 of the training programs indicated that their R.C. U. funding was $\$ 2,419,830.26$ allowing an average per project of $\$ 53,774.01$. This indicates that R.C.U. played a major part in the funding of the projects. In terms of monies spent (as indicated by the respondents), training programs accounted for 49.9% of the monies spent for total costs (refer to Q-O \#16); they used 72.3% of the monies allocated by R.C. U. , as indicated by the respondents.

It is quite evident from the numbers of projects involved in training and the monies spent, that R.C.U. funding was heavily involved in training. Because not all directors responded to the questions of funding ($\mathrm{Q}-\mathrm{O} \# 16$) and the fact that some projects included other activities besides training, the cost per trainee could not be determined exactly. It was found that when all the per unit costs, within training programs only, was totaled and averaged, the resulting figure was $\$ 821.99$. When the per unit cost for trainees was specified, totaled, and averaged, the resulting average was $\$ 508.65$. It is apparent that most of the funding of training programs went directly to training people per se, as opposed to developing materials, equipment, etc., although some directors did include those expenses in their specific unit cost per trainee.

Follow-up of Participants (Q-O \#28, \#29, \#30)

It was found that 48.8% of those responding, indicated that the majority of participants (students or adults) remained in school or went into another education/ training program. Twenty-three or 51.2% of those responding went immediately into industry or business.

Most of the teachers, or other professionals, remained in the position or area that was the focus of the project (32 or 94.1% of those responding to the question). Only 2 or 5.9% moved into a position or area not related to the focus of the project.

The names and addresses of firms listed in question \#29 will be made available to R.C. U. Eighteen directo's listed 54 firms, while five indicated that the question did not apply because of the nature of their project (e.g. training junior high students); 37 did not respond at all to the question.

Selected rewards were listed in question \#30 that might be earned by teachers or other professional participants in the projects. It appears that college credit is the most common reward earned by the professional participants (refer to Table 34). Although "None of the above" is the mode response, one might interpret such responses as indicating other rewards not listed were earned by the participants, or that participants received no tangible rewards. It is also interesting to note that only 8 directors indicated that credit towards salary advancement was given to participants.

TABLE 34

REWARD EARNED BY TEACHERS/OTHER PROFESSIONALS WHO WERE THE TRAINING PARTICIPANTS

Rewards	\mathbf{f}
An initial degree	2
An advanced degree	3
An initial certificate	1
College credit	12
Credit towards salary advancement	8
None of the above	16

On-Site Visitations (S1-8)

As part of this study, and included in the initial proposal, on-site visits were made. Forty-seven or 31.9% of the initial sample were selected to represent all geographic, size (funding), and vocational service areas. One of the 47 projects selected had its funding returned to the State (17096), one director refused to coop. erate (16052), one project could not be located (16040) or identified by the school district as having ever existed, and afier arriving for the interviews four projects were found to be duplications (or extensions) of other programs (thus responses for one project would be applicable for its mate). In all, 40 (27.2\%) different projects, or totally 44 (29.9%) projects were visited. The initial proposal indicated that 15% of the projects would be visited, thus almost twice the percentage of visits were made.

Again it should be noted that not all directors responded to all questions, thus the number who responded will not be consistent. All qualifiable data will be made available to R.C.U. for its consideration.

Almost all the directors enjoyed being involved in their projects (S1a). Thirty-five indicated with a positive response, only one gave a negative response, and four didn't respond at all.

Project Impact (S1b, 1-5)

Directors were asked to indicate how the projects had impact on students, adults, staff, creating materials, and new methods or approaches (refer to Table 35). Since the interest is on how the impact was felt, the number of different examples given (or shown) for each group or area would indicate the extent of the impact. Meeting the needs of adults and developing new approaches or methods were the weakest areas. Meeting the needs of students, professional growth of staff, and creating new materials were strongest.

TABLE 35
PROJECT IMPACT IN SELECTED GROUPS OR AREAS

	Number of					
Group or Area	0	1	2	3	4	5
Meeting the Needs of Students	7	22	5	4	2	0
Meeting the Needs of Adults	24	12	3	1	0	0
Professional Growth of Staff	6	21	11	1	1	0
Creating New Materials	9	20	9	2	0	0
Developing New Methods or	17	17	4	2	0	0
\quadApproaches						

Aside from not generally meeting the needs of adults and developing new approaches (which are consistent with the results of the questionnaire-opinionnaire), the project directors were able to establish for the interviewers how they, the directors, could provide impact information.

Ripple Effect (S2, 1-4)
Directors were asked to explain the ripple effect their project had on the educational system (Table 36). Again the number of different effects per area was tabulated.

The data indicated that the projects tend to have much less ripple effect than direct impact. This might be explained because: 1. ripple effect is difficult to establish, 2. ripple effect is hard to demonstrate; or 3. there just wasn't any such effect created by the projects.

It is interesting to note the lack of multiple examples given the interviewers by the directors. The definition of "community," as used by many directors, was the business, industrial, or commercial establishment - hence the number of responses given. When "community" was used in a sociological or political sense, most of the directors would have given zero response.

Continue or Discontinue The Project (S3a-e)

Although all projects were completed before the on-site visits, directors were asked to comment as to whether they would have liked the projects to have been continued. Thirty-five indicated that they would have liked to see the projects either repeated, continued, expanded, or revised. Four would have discontinued the project; one gave no response.

TABLE 36
PROGRAM'S RIPPLE EFFECT ON THE EDUCATIONAL SYSTEM

Effected Areas	Number of Different Examples					$\begin{gathered} \text { Given } \\ 5 \end{gathered}$
	0	1	2	3	4	
Students						
Achievement	20	14	4	2	0	0
Motivation	17	18	5	0	0	0
Awareness	20	14	5	1	0	0
Teachers Performance						
Teaching	40	0	0	0	0	0
Attitude	29	10	1	0	0	0
Curricular Improvements						
Direct	17	22	1	0	0	0
Indirect	24	15	1	0	0	0
Actual	27	11	2	0	0	0
Projected	17	17	6	0	0	0
Parental Involvement						
Community Reaction	21	18	1	0	0	0
Community Understanding	25	11	4	0	0	0
Community Cooperation	13	20	7	0	0	0

Elements That Could Improve The Projects (S4a-e)
If directors answered to continue the projects, they were then asked to indicate in selected areas, what they would like to see, do, or make suggestions to make the program more successful. The number of different responses given per area was tabulated rather than evaluating responses qualifiably (Table 37). Although almost half the directors did not give suggestion per each selected area, it is apparent that suggestions for improvement did not fall within curriculum or system improvement. No one area appears to stand out.

State Department of Education Help (S5a-e)

A question concerning possible aid by the State Department of Education in selected areas was asked. Again the number of different responses were tabulated per area (Table 38).

Additional funding, feedback on a regular basis, and more on-site visits appear to be the areas in which the State Department of Education could aid in making projects more successful. This would be in keeping with the need for R.C. U. to expand its interaction role with projects.

TABLE 37
NUMBER OF RESPONSES GIVEN PER SELECTED AREA TO MAKE PROJECTS MORE SUCCESSFUL

Selected Areas	Number of Different							Examples Given			
	0	1	2	3	4	5					
Students	20	17	1	2	0	0					
Staff	18	18	4	0	0	0					
Materials	18	19	3	0	0	0					
Curriculum	24	12	4	0	0	0					
System Improvement	22	13	5	0	0	0					

TABLE 38
STATE DEPARTMENT OF EDUCATION HELP

Areas of Help	Number of Different					Examples Given			
From the State	0	1	2	3	4	5			
			11						
Additional Funds	23	14	3	0	0	0			
Program Guidance	21	14	4	1	0	0			
Professional Resources	19	20	1	0	0	0			
On-Site Visits	13	23	4	0	0	0			
Feedback on a Regular Basis									

Physical Identification of Objectives (S6a-y)

Interviewers were requested to see or locate any tangible, or physical remains of projects. This was an attempt to establish whether the projects produced anything. The data is displayed in Table 39.

Reports and curricular materials appear to be the only physical remains of projects shown to the interviewers. In many cases "shop layouts" was not applicable to the projects, "student status after the programs" was found in either reports or articles; staff training and performance dealt with continued in-service programs that were off-growths of projects and/or the utilization of materials developed by such projects.

In any event, it does appear that there are physical demonstrations that the programs have had some lasting effect or influence on current educational practices.

Good and Welfare (S7, S8)

The last two questions of the schedule was written to generate any comments directors might like to share with the interviewer. Most comments reflected or

TABLE 39

PHYSICAL EXAMPLES OF PROJECTS

	Were They Shown?	
Examples	Yes	No*
New Shop Layout	13	27
Staff Trained and Performing	20	20
Student Status after Program	20	20
Curricular Materials	24	16
Reports	31	9
In-house Evaluations	16	24
Other Items	6	34

*In some cases the examples are not applicable to a project.
repeated the responses that were given during the intervie . . Only twelve directors refused to share any "other" comments with the intervie er. Almost all comments were positive about the projects, and about the support directors received from many sources to make the projects successful.

The last question was used to determine, as unobtrusively as possible, whether the local Board of Education perceives the project favorably or not. It could also be considered an indication as to whether the Board of Education would have funded the project without R.C.U. help.

Eighteen indicated that they felt the local Board would use an increased amount of their operating budget for the project (if needed to continue the project). Sixteen indicated the School Board would not. Of the six remaining, four didn't respond and two were not sure.

Summary

The directors appeared to have enjoyed their experiences in their projects. The projects tended to have impact on students, staff, and material development. The projects tended to have little ripple effect beyond the immediate populations served, and even this was rather restrictive. Most directors would have liked to see their projects continued in some fashion.

Additional funding, regular feedback, and more on-site visits were areas where directors saw the State Department of Education aiding projects. However, in-service programs, etc., appear to also be examples of the continued effects of projects. It would appear that as many Boards of Education would use their own operating budgets to continue the projects as would not.

CHAPTER 5

COMPARISONS OF GROUPS

The following chapter is devoted to the comparison of groups in a more indepth analysis of the data than in the preceding discussion.

Length of Project

The question of whether the population distributions, by length of projects, are the same was tested by the Chi Square (χ^{2}) analysis method. The three basic populations were: one year projects; two year projects; and three year projects. Table 40 is a summaxy of the χ^{2} testing on selected variables utilizing the appropriate degrees of freedom. The rows were the length of the projects, and the columns were the types of responses found for a particular variable.

There didn't appear to be any significant differences among the projects in terms of: prime administrator's background; influencing educational practices at sundry levels; influences on project director's decisions; project's outcomes in terms of ultimate effect; rating of the adequacy of R.C.U. funding; knowledge of per unit costs (as reflected in responding and non-responding) to the question or the number of each type (ethnic identification) of trainee. Length of projects didn't appear to generate any different responding patterns with the variables just discussed.

There appeared to be a significant difference ($p<.05$) in the percentages devoted to developing materials among the one, two, and three year projects. It seems that the two and three year projects devoted more time to developing materials than did one year projects.

One and two year projects also devoted more time to training students/adults than did three year programs (the level reached was beyond .01).

Each year-group was then analyzed separately in terms of meeting objectives (Q-O\#5) and how they viewed the adequacy of R.C.U. funding. The rows were the degrees of adequacy of R.C.U. funding and tine columns were the ratings of meeting objectives. Because of the nature of the instrument and the statistical program used, the responses to meeting the objectives were analyzed per line on the instrument. That is, all responses to line one of question (Q-O \#5) were tabulated by rating of meeting the objective (frequency table column) by adequacy of R.C.U. funding (frequency table row). It was assumed that any differences among the three year groups would be reflected in a pattern of significant χ^{2} reached.

It would seem that the distributions of responses (objectives met adequacy of funding-Table 41) were not significantly different for all those in one year projects. The same was true for the two year and three year projects. The pattern of responses on meeting objectives for those who viewed R.C.U. funding as not very adequate, was similar to those who viewed the R.C.U. funding as very adequate, etc. There was no significant difference found, let alone a series of significant patterns.

Additional analyses were made utilizing length of program. They will be described later in this report. The data analyses indicate that length of the project doesn't appear to affect the patterns of responses found in this study. These one year, two year, and three year programs are not unique from each other.

Types of Responses, Ratings of Objectives, and Unexpected Outcomes

All responses to question (Q-O\#5) were categorized into six general areas (administrative, program, student, teacher/staff, materials, and others). Did the type of response generate any differences in rating patterns was a question investigated. Chi squares were calculated (Table 42) in the same manner as was done for the data found in Table 41.

There were no significant differences generated in the patterns of rating objectives as a result of the types of objectives. Thus the pattern of administrative type objective ratings were similar to the rating patterns of student type objectives.

Unexpected outcomes (Table 43) were analyzed in the same manner. Again there were no significant differences in patterixs of responses generated as a result of the types of responses. In summation, it can be stated that the directors rated the different objectives similarly - that is, the proportion of high ratings were similar (not necessarily identical) for each of the types, and it could be concluded that the nature of particular objectives did not generate more favorable (or negative) ratings than did other types of objectives.

TABLE 40
SUMMARY OF χ^{2}, TESTING THE POPULATION DISTRIBUTIONS (1 YEAR $\times 2$ YEAR $\times 3$ YEAR) ON SELECTED VARIABLES
Variables $\quad \chi^{2} \quad \mathrm{p}^{*}$

Project Prime Administrator's Background (Q-O\#3C)

Educational Level	6.1682	n.s.
Number of years teaching	42.5961	n.s.
Number of years supervision/administration	33.1214	n.s.
Non-teaching experience	22.2662	n.s.

Percentages of the Elements of Programs (Q-O\#4)

Curriculum Development - Scope and Sequence/Guidance	20.1388	n.s.
Research	16.9312	n.s.
Developing Materials	34.9224	<. 05
Training-teachers/other professionals	26.1376	n.s.
Training-students/adults	41.9745	<.01
Equipment	15.8741	n.s.
Work Study	20.5221	n.s.

Influencing Educational Practices (Q-O\#8)
Building or neighborhood

6.1088	n.s.
7.9722	n.s.
6.7865	n.s.
12.0869	n.s.
6.6215	n.s.

Influencing Project Director's Decisions (Q-O\#10)

Sources of Internal Influence

Professional staff/faculty	4.5098	n.s.
Students	7.6496	n.s.
Secretary	12.8101	n.s.
Unions	13.2437	n.s.
School Board or University Policies	10,5119	n.s.
Restriction of the Proposal	6.4649	n.s.
Your Immediate Supervisor	5.3041	n.s.
Yourself	6.8817	n.s.

Sources of External Influence

Parents	11.0027	n.s.
Unions	12.4829	n.s.
Community	10.9594	n.s.
Local governmental policies	6.7552	n.s.
State governmental policies	16.9291	n.s.
U. S. governmental policies	14.4675	n.s.
Political parties	4.7731	n.s.
Pressure groups	6.4274	n.s.

(Continued)

TABLE 40 (continued)

Variables	x^{2}	p^{*}

Projects Outcomes in terms of Ultimate Effect (Q-O\#15)

$$
5.3041 \text { n.s. }
$$

Rating of the Adequacy of R.C.U. Funding (Q-O\#16c)
5.2889 n.s.

Number responding-not responding to per unit cost (Q-O\#18)
5. 1934
n.s.

Types of Trainees (Q-0\#27)
Students (number of)
American-Indian
Blacks
Puerto Ricans
Whites
Orientals
Others
23.7288
n.s.
16.5555
n. s.
--
21. 4053
0.8898
30.4641
n. s.
n. s.
n.s.

Adults
American-Indian
Blacks
Puerto Rican
Whites
Orientals
Others
6.6638
10.7872
--
4.1910
--
n. s.
--
n.s.
n.s.

Teachers

American-Indian	8.8983	n.s.
Blacks	2.4293	n.s.
Puerto-Rican	0.8898	n.s.
Whites	17.2990	n.s.
Orientals	0.8898	n.s.
Others	5.7511	n.s.

[^1]TABLE 41
MEETING OBJECTIVES IN TERMS OF ADEQUACY OF R.C.U. FUNDING FOR ONE YEAR, TWO YEAR, AND THREE YEAR PROJECTS

Meeting Objectives (Q-O\#5) Reaching Levels of Significant Differences

One Year Projects

Objectives Met (Q-O \#5) by Adequacy of R. C. U. Funding (Q-O\#16c) 0

		χ^{2}	p*
Lines on Instrument -1	9.1240	n.s.	
2	4.4854	n.s.	
3	8.9999	n.s.	
	3	8.8888	n.s.
	4	2.4374	n.s.
	5	3.4999	n.s.
6	1.8749	n.s.	

Two Year Projects

Objectives Met (Q-O\#5) by Adequacy of R.C.U. Funding (Q-O\#16c) 0

		χ^{2}	p*
Lines on Instrument	1	2.3333	n.s.
	2	3.9583	n.s.
3	10.6666	n.s.	
	4	0.7499	n.s.
	5	1.3333	n.s.
6	2.0000	n.s.	
	7	no responses	-

Three Year Projects

Objectives Met (Q-O\#5) by Adequacy of R.C.U. Funding (Q-O\#16c)

		χ^{2}	p*
Lines on Instrument	1	2.0740	n.s.
	2	7.7159	n.s.
	3	0.7999	n.s.
	4	1.0714	n.s.
	5	3.9374	n.s.
	6	8.6666	n.s.
	7	2.9999	n.s.

* based on appropriate d.f.

TABLE 42
MEETING OBJECTIVES BY TYPES OF RESPONSES (Q-O\#5)

				Total Number of Significant Differences
Lines on Instrument -1	9.4469	n.s.		
	2	22.9365	n.s.	
	3	13.2722	n.s.	
	4	17.1086	n.s.	
5	3.6812	n.s.		
	6	7.3417	n.s.	
	7	6.4499	n.s.	
				$\leqslant 0$

TABLE 43
UNEXPECTED OUTCOMES (TYPES OF RESPONSES) BY POSITIVE/NEGATIVE RESPONSES (Q-O\#6)

	χ^{2}	p*	Total Number of Significant Differences
Lines on Instrument -1	3.7681	n.s.	
	2	10.8928	n.s.
	3	1.4384	n.s.
	4	0.0000	n.s.
	5	5.9999	n.s.

* based on appropriate d.f.

Request for Assistance by Assistance Received

Of interest is whether those who requested assistance perceived the assistance they received as being higher than those who did not request assistance ($Q-0$ \#20).

The data displayed in Table 44 indicates that from all sources of assistance, those who requested assistance rated their assistance significantly different than those who did not. Those who requested assistance, in each case, rated the assistance received much higher than those who didn't request such aid. However, the results were expected, since one of the ratings (1) was for "no assistance". Thus many who didn't request assistance rated the response to the particular source with a "1". It is of interest to note that: out of 39 who did not request assistance from R.C.U., 17 rated R.C.U. help above 1; out of 20 who did not request assistance from State Department of Education (Voc. Ed.), 9 rated assistance received above 1 ; and out of 42 non requests for help, 10 rated help from teacher education institutions above 1. In all the other cases, almost all those who didn't request help from a source, were given no assistance. Thus it is evident that assistance was given to those who asked for it, and that many who did not request help from R.C.U., Vocational Education Department (State), and teacher education institutions, received it anyway.

TABLE 44
REQUEST FOR ASSISTANCE BY RATING ASSISTANCE RECEIVED FROM SOURCES (Q-O\#20)

	χ^{2}	p^{*}
R. C. U.	36.8004	.001
State Department of Education (Voc. Ed.)	50.9016	.001
State Department of Education (Non-Voc. Ed.)	42.7182	.001
County Educational Personnel	50.3305	.001
District Personnel	49.2390	.001
School Building Personnel	47.3937	.001
Teacher Education Institution	51.1739	.001
* based on appropriate d.f.		

Multiple Discriminant Analysis

In order to determine to what extent various classifications and groups can and are different among each other, and on what variables the differences can be established (maximizing the differences), a multiple discriminant analysis approach was used. The B MD 05 M (Dixon's Biomedical Computer Program No. 2) was the computer program utilized.

TABLE 45
LISTING OF DISCRIMINANT ANALYSIS

General Area	Groups
Length of Projects	1 year; 2 year; 3 year
Population Concentration	Urban; Suburban; Rural
Geographic Community	Under 25, 000; 25-50, 000; 50, 001-100, 000 over 100,000
Types of Activities (over 50\%)	Work Study; Equipment/Development Material; Training; Research; Curricu lum
Total Funding Levels	Under 10,$000 ; 10-30,000 ; 30,001-75,000$; over 75, 000.
R.C. U. Funding Levels	Under 5.000; 5, 000-9, 999; 10, 000-50, 000 over 50, 000
Students (over 50\%)	Minority; White
Type of Training (over 50\%).	Teachers; Students

TABLE 46
DISCRIMINANT ANALYSIS KEY - VARIABLES USED IN THE ANALYSIS

Variable Name	Number Used under Mean Score and Coefficient
Number of Years Teaching (Q-O\#3B)	1
Number of Years Supervision/Administration (Q-O\#3b)	2
Number of Years of Non-Educational Experience (Q-O\#3c)	3
Transformed Rating of Prime Objectives (Q-O\#5)	4
Transformed Rating of Unexpected Outcomes (Q-O \#6)	5
\bar{X} of Factors Contributing to Success (Q-O \#7a)	6
\bar{X} of Factors Hindering Success (Q-O\#7b)	7
Influencing Educational Practices at (Q-O \#8):	8
Building Level	8
Local Level	9
County/Intermediate Level	10
State	11
National	12
\bar{X} Extent of Internal Influence (Q-O \#10a)	14
\bar{X} Extent of External Influence (Q-O\#10b)	15
\bar{X} Satisfaction Generated (Q-O\#13)	16
Attitude Changes (Q-O\#14)	17
Ultimate Outcome on Targeted Population (Q-O\#15)	18
Adequacy of R. C. U. Funding (Q-O\#16c)	19
\bar{X} per Unit Cost per Project (Q-O\#18)	20
Assistance Received (Q-O\#20)	21
Effectiveness of Voc. Ed. Adv. Council (Q-O\#25c)	

A survey of Tables 45 and 46 should give the reader an overview of the thrust of the analysis. The groups are those generally found as classifications in most formal structures or organizations. The variables investigated focused on: administrative input, objectives, attitudes, effects, assistance, and influences. All twenty-one variables were used in each discriminant analysis. The discriminant analyses are found in Tables 47 to 54 ; a summary of the variables with the heaviest loadings (coefficients) per discriminant function is found in Table 55. The reader may use Table 46 as a key to identify the variables in the sundry analyses.

The generalized Mahalanobis D^{2} is used to determine if the mean values are the same in all groups for all the same variables in composite. If the D^{2} reaches the level of statistical significance ($p<.05$), then it can be assumed that there are significant differences among the groups in terms of the variables; if not, we don't go any further. The coefficient loadings can be considered as weights for each variable in order to maximize the differences among the means of the composites derived from the groups relative to the variance within the groups. Thus large positive or negative weights help to maximize the separation among the groups. The heavier the loading of a variable, the more influence (either positive or negative) it has on the uniqueness of that particular group. The classification matrix is a summary of how many projects found in the original groups (rows) would be placed in the maximized groups (columns). This placement is based on the largest probability of membership for each project in a particular group (column).

Because of the volume of data, the evaluation of classification functions for each case is not presented. Mean scores are found in each table. The reader may survey the mean scores to determine existing differences among the groups for a particular variable; however, this analysis is focusing on relationships between and within groups.

Since the Mahalanobis D^{2} (in Table 47) did not reach the .05 level of significance, it can be assumed that there are chance differences among the three length of projects. We can assume that the one, two and three year projects can not be separated along the twenty-one variables (Table 46) used in the analysis.

Urban, Suburban, and Rural projects can be separated. The classification of urban projects is stronger than suburban, and suburban is stronger than rural, in terms of the variables. That is, the separation is greater for urban than suburban, which in turn, is greater than rural. The strongest factors for the urban group are $\overline{\mathrm{X}}$ satisfaction generated and adequacy of R.C.U. funding. The heaviest loaders for suburban are unexpected outcomes, influences of education practices at the county level, and \bar{X} satisfaction generated. The rural loads high on \bar{X} satisfaction generated and adequacy of R.C.U. funding. It is apparent that $\overline{\mathrm{X}}$ satisfaction generated is a strong influence in separating the three groups; to a lesser degree, the adequacy rating of R.C. U. funding is a factor.

Projects serving various size communities appear to be quite different in this study. Those in projects serving communities of $50,000-100,000$ are much different than those serving communities of over 100,000 , both are different from the other two groups (under 25,$000 ; 25,000-50,000$). Meeting prime objectives, internal influence, \bar{X} satisfaction generated, and attitude changes have strong effects on projects serving small communities. The projects serving $25,000-50,000$ people are affected
by internal influence, and $\overline{\mathrm{X}}$ satisfaction generated. The next size group is influenced by meeting prime objectives, unexpected objectives, internal influence, and X satisfaction generated. The projects serving the largest populations are affected by (or different because of) internal influence and \bar{X} satisfaction generated. It appears that all four groups are affected by \bar{X} satisfaction generated. It also appears that \bar{X} satisfaction is a stronger discriminator for the projects serving the top three population communities than it does for the projects serving communities under 25,000 . The extent of internal influence also appears to be good discriminator among the groups. Meeting prime objectives is a lesser effective factor.

Projects whose major (50% or more) focus is on a particular area (e.g. work study; curriculum-scope and sequence/guidance; training; research; equipment and developing materials) appear to be quite different from projects focusing on other major areas. Because of cell size limitations, all training programs were combined. Equipment was merged with developing materials for the same reason. Projects focusing on work study, equipment and developing materials, and curricu-lum-scope and sequence/guidance are quite distinctive and are quite different from each other and from those involved in training and research. The latter two areas projects can also be separated, but not as clearly. All five areas can be separated from each other - thus they are quite different.

Work study programs are influenced most positively by the extent of internal influence and negatively by ultimate outcomes on targeted populations. Equipment and developing material projects were separated from the others by: influence on the educational practices at the county level; satisfaction generated; very heavily by attitude chan.jes; very negatively, by ultimate outcome on targeted population; adequacy or R.C.U. funding; and assistance received.

Training programs were affected by: unexpected outcomes; extent of internal influence; satisfaction generated; and attitude changes. Variables influencing research projects were: meeting prime objectives; unexpected outcomes; satisfaction generated; and adequacy of R.C.U. funding. The projects involved in curriculum were separated from the others primarily by: unexpected outcomes; quite heavily by the extent of internal influences; by the extent of external influences (negatively); heavily by satisfaction generated; attitude changes (negatively); heavily by both ultimate outcomes and adequacy of R.C.U. funding; and assistance received.

It would appear that in separating the various groups, the following factors were most influential; degree of unexpected outcomes; extent of internal influence; satisfaction generated by the projects, attitude changes; ultimate outcomes; and the degree of adequacy of R.C.U. funding.

Programs were broken down into four groups according to total funding size. They were: under $\$ 10,000 ; \$ 10,000-30,000 ; \$ 30,000-75,000$; over $\$ 75,000$. There were significant differences among the four groups in terms of the twenty-one composite variables. The under $\$ 10,000$ group of projects is most distinctive. The over $\$ 75,000$ is the next most distinctive group. It is most difficult to separate the projects falling into the $\$ 10,000-30,000$ and $\$ 30,000$ to $\$ 75,000$ categories. Thus the two extreme funded groups are the most separated.

Under $\$ 10,000$ funded projects are separated best by ratings on meeting prime objectives, unexpected outcomes (in a negative way) influencing educational practices at the county level, extent of internal influence (highest factor), satisfaction generated, adequacy of R.C.U. funding, and assistance received.
$\$ 10,000$ to 30,000 level projects were influenced most by: ratings of prime objectives; factors hindering success; extent of internal influence; satisfaction generated; and adequacy of R.C.U. funding.
\$30, 001 -75, 000 funded programs were separated from the others primarily by: ratings of prime objectives; factors hindering success; influencing educational practices at the county level; extent of internal influence; satisfaction generated; attitude changes; and adequacy of R.C.U. funding.

The most costly programs (over $\$ 75,000$) were affected by: prime objectives; unexpected outcomes (negatively); factors hindering success; influencing educational practices at the county level; satisfaction generated; attitude changes; adequacy of R. C. U. funding; assistance received; and most heavily by the extent of internal influences.

It is apparent that several factors have the most influence in separating the projects that were divided according to total funding. These factors are: meeting prime objectives; factors hindering success; influencing educational practices at the county level, extent of internal influence; and the degree of adequacy of R.C.U. funding.

The programs were then looked at according to the level of R.C.U. funding (under $\$ 5,000 ; \$ 5,000-9,999 ; \$ 10,000-50,000$; over $\$ 50,000$). The separation among the groups was not as pronounced as the separation according to total funding (the D^{2} for R.C.U. reached only the .025 level of significance; the D^{2} for total funding was beyond the .001 level). Although there appears to be strong separation among the three top funded classifications, none of the groups are particulaitly unique.

Meeting prime objectives, unexpected objectives (negatively), factors hindering success, extent of internal and external influence, satisfaction generated, attitude changes, and adequacy of R.C. U. funding, all help to separate the under $\$ 5,000$ R.C.U. funded projects from the others.

Those factors helping to make the $\$ 5,000$ to 9,999 unique are: prime objectives; contributions to success (negatively); hindrance to success; influencing the educational practices at the building level (negatively); very heavily by the extent of internal influence; satisfaction generated; attitude changes; adequacy of R.C. U. funding; and assistance received (negatively).

The $\$ 10,000$ to $\$ 50,000$ group was affected by: factors contributing to success (negatively); factors hindering success; extent of internal influence; satisfaction generated (extremely heavy weights); attitude changes; and adequacy of R.C.U. funding.

The highest funded group (over $\$ 50,000$) was generally separated by: extent of internal influence; heavily by satisfaction generated; attitude changes; and adequacy of R.C. U. funding.

It would appear that the major contributors to the separation of the four classifications are: the degree of hindrance received from sundry sources; the extent of internal influence on decision making; satisfaction generated by the programs, attitude changes, and adequacy of R.C.U. funding.

Training programs were then analyzed according to whether they trained whites or minority students. Only those programs where over 50% of the participants were white or were either American Indian, Black, Puerto Rican, Oriental were selected ("others" was excluded).

The separation between the programs training whites and those training minorities was extreme. The strongest separation among all the groups in all the discriminant analy ses was found here. This means that when considering all twenty-one variables, the two classifications are quite different.

The minority programs were separated from the other programs by: noneducational experience of the director (heavily); ratings of prime objectives (extremely heavily); unexpected outcomes (heavy); factors contributing to success; factors hindering success; influencing building educational policies (negatively); influencing local educational policies (heavily); influencing national educational policies (very heavily negative); extent of internal influence; extent of external influence (negative); satisfaction gener ated (negative); attitude changes (heavily negative); ultimate outcomes (heavy); adequacy of R.C.U. funding; assistance received (heavily negative); and effectiveness of Vocational Education Advisory Councils.

Programs involved primarily with white participants were influenced by: negatively, number of years of supervision/administrative experience of director; negatively by non-educational experience of the director; very heavily by meeting prime objectives; heavily negative unexpected outcomes; factors hindering success; heavily by influencing educational practices at the local district level, negatively at the county level, heavily at the state level, very negatively heavy at the national level; extent of internal influence; negatively, extent of external influence; satisfaction generated; negatively, attitude changes; very heavily negative ultimate outcornes; very heavy adequacy of R. C. U. funding; very heavily assistance received; and effectiveness of Vocational Education Advisory Councils.

Of considerable interest here are the factors (variables) that appear to have opposite effects on the two groups. These factors are: number of years of noneducational experience - with a negative effect on the white group; rating of unexpected outcomes - with a negative effect on the white group; the degree of influencing educational practices at the building level - with negative effect on the minority group; the degree of influencing educational practices at the county/intermediate level - with negative effect on the white group; satisfaction generated by the project with negative effect on the minority group; ultimate outcome on targeted population with negative effect on the white group; degree of assistance received - with negative effect on the minority group.

Also of interest is where there are similar effects (in terms of direction) : the degree of effect is worth noting. The following had significant effects on both groups, with the group receiving the strongest effect indicated: rating of prime objectives
(minority strongest); factors hindering success (minority strongest); influencing educational practices at the local level (white strongest); influencing educational practices at the national level - negative effect (white strongest); extent of internal influence (white strongest) ; extent of external influence - negative effect (white strongest); attitude changes - negative effect (minority strongest); adequacy of R.C.U. funding (white strongest); and effectiveness of Vocational Educational Advisory Councils (white strongest).

It appears that the strongest factor generating the separation between the two groups for minority programs is meeting the prime objectives (extreme high positive weight of 26.29979). The extreme negative factors for minority programs are: influencing practices at the national level; attitude changes; and assistance received.

The strongest factor generating the separation for the white student programs is amount of assistance received (high positive weight of 19.69264). Two other factors had strons positive weights. They were: meeting prime objectives (13.45496); influencing educational practices at the state level (14.88105); and adequacy of R.C.U. funding. There were several highly negative factors. They were: unexpected outcomes; influencing educational practices at the county and national levels; extent of external influence; and ultimate outcomes of targeted population (ultimate outcomes generated almost as high a weight as did amount of assistance).

At best, it appears that the twenty-one variables affected each group differently. There are many significant reversals of effects, as well as many variables having different strengths when there are similar effects. However, it does appear that meeting the prime objectives of the projects is more important and significant to programs dealing with minorities than with whites. It appears that assistance received is much more significant and important for white programs than minority programs. The ultimate outcomes on targeted population appears to have a significant negative effect on programs dealing primarily with whites. Training programs were then analyzed according to whether they taught primarily teachers or whether they taught primarily students. The separation was not as strong as the previous analysis; however, the separation was quite.strong.

The teacher group was separated by: meeting prime objectives, unexpected outcomes (negative); factors contributing to success; factors hindering success; educational practices at the local, state, and national (negative) levels; extent of internal influence; satisfaction generated (negative); ultimate outcomes on targeted population; adequacy of R.C.U. funding; assistance received (negative); and effectiveness of Vocationa! Education Advisory Council.

Groups serving primarily students were separated from the teacher group by: meeting prime objectives; unexpected outcomes (negative); factors contributing to success; factors hindering success; educational practices at local, state, and national (negative); extent of internal and external (negative) influence; satisfaction generated (negative); attitude changes (negative); adequacy of R.C.U. funding; assistance received; and effectiveness of Vocational Education Advisory Councils.

The strongest influences for teachers were: meeting the prime objectives of the project (20.86571); influencing educational practices at the national level (-11.71726); and adequacy of R.C.U. funding (14.27347).

The major factors for students appear to be: meeting the prime objectives of the project; influencing educational practices at the national level (-10.91530); and adequacy of R.C.U. funding (11.80378).

There was only one significant reversal effect generated by a variable - that was assistance received, with teachers group having a negative loading.

The groups appeared to be quite similar in terms of what variable affected them and which ones helped to separate the two groups. There were six variables that did appear to have a different degree of effect on the two groups. They were: unexpected outcomes - negative effect (students stronger); influencing educational practices at the local level (students stronger), the state level (students stronger), and national level - negative effect (teachers stronger); satisfaction generated negative effect (teachers stronger) and adequacy of R.C.U. funding (teachers stronger).

It would appear that meeting the prime objectives, influencing educational practices at the national level (negative), and adequacy of R.C.U. funding are the factors that are separating the two groups.

Summary of the Discriminant Analysis

It was found that there are significant differences among the projects in terms of: rural, urban, suburban; size of communities served; types of primary activities; degrees of total funding; degrees of R.C.U. funding; ethnic identification of students trained; and focusing on training teachers or students. Length of project (one year, two years, three years) did not generate any differences. The groups were analyzed in terms of a multivariate space (21 variables) utilizing the discriminant analysis approach.

It was found that different factors had different effects on the groups, depending on the nature of the group. It would appear that in one situation a particular variable would have a strong positive effect in separating a group, and in another situation the same variable would have a strong negative effect. It is for this reason, that factors that consistently influenced separations (regardless of direction), or are extremely powe rful, should be considered as being significant for the purposes of this study.

The following variables appear to have the most influence in separating the many groups in the analyses just described:

The most powerful and significant variable appears to be meeting the prime objectives of the program. This variable generated the highest weights - particularly with the training programs. This means that meeting goals and objectives is quite important, generates differences and therefore much value should be placed here.

The effects of unexpected outcomes appears to be mixed - with both positive and negative effects on the groups. But unexpected outcomes appear to be a major factor. The effects of factors hindering success appears to be important. Factors that hinder success must be considered as a major element in this study.

Influencing the educational practices at the national level had significant effect in training programs only. The effect was negative. Generally the effect on educational practices at the national level would not be a significant thrust of such programs, which most likely explains the lack of effect nationally. Obviously, groups of training programs tended to generate dissimilar but negative effects at the national level.

The effect of internal influence on decision-making appeared to be a significant factor in this study and played a major role in discriminating among the groups. Mean satisfaction generated by the program on interested and concerned personnel was the one variable that generated the largest number of significant weights. It appeared more times than any other variable in helping to discriminate among the groups. Changes in attitude among participants toward selected stimuli was another significant discriminator. The degree of adequacy of R.C.U. funding also was an important discriminator. The amount of assistance had positive and negative effects in separating the groups. In programs for teachers and minorities, the amount of assistance received had a negative effect. It appeared to be highly important (positive) for programs dealing with white students. Only the training programs appeared to consider the effectiveness of Vocational Education Advisory Council as being important (positive). The programs dealing primarily with whites valued their effectiveness more than the others.

Urban, Suburban, and Rural projects were easily separated. Programs serving larger communities were easier to distinguish than those serving smaller communities. Training and Resoarch programs were not as easily identified as work study, equipment-developing materials, and curriculum. The extremes in total funding were quite different; the two middle groups were not. The low R.C.U. funded projects were not easily separated as were the other levels of R.C.U. funding. Training programs were the easiest to separate of all the classifications. It would also appear that more factors (variables) influence the separation than any of the other groupings.

It can be concluded that the training projects are more sensitive to the variables studied than any other grouping of projects. It is also interesting to note that goals and goal-related variables played a major role in separating the groups, and that several non-goal oriented factors played a part as well. The nature of the directors of projects and per unit costs were not factors.

TABLE 47
DISCRIMINANT ANALYSIS - LENGTH OF PROJECT
GROUP
SAMPLE SIZE
MEAN SCORES
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
FUNCTION
COEFFICIENT
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
CONSTANT

FUNCTION	
GROUP	1
1	38
2	4
3	5

CLASSIFICATION MATRIX

TABLE 48
DISCRIMINANT ANALYSIS - POPULATION CONCENTRATION

GROUP	URBAN	SUBURBAN	RURAL	total
SAMPLE	31	20	29	B0
MEAN SCORES				
1	15.32258	12.90000	12.03448	
2	6.74193	4.05000	5.65517	
3	4.29032	5.20000	4.13793	
4	4.32548	3.60100	3.83931	
5	0.30645	0.66350	0.53793	
6	2.95161	3.30000	3.50000	
7	2.08710	3.55000	3.13793	
8	3.83871	5.05000	4.93103	
9	3.93548	4.70000	5.41379	
10	2.25806	4.45000	4.06896	
11	3.67742	4.15000	3.96552	
12	1.83871	3.60000	3.20690	
13	5.12096	4.70099	4.97689	
14	4.15451	4.17900	4.02758	
15	4.83290	4.08499	4.45586	
16	4.11161	3.65050	4.04517	
17	4.16129	3.55000	3.93103	
18	2.67742	2.45000	3.37931	
19	1033.03223	1719.75000	574.17236	
20	2.31645	2.49049	2.27241	
21	1.58064	2.35000	2.27586	
	Generalized Mahalanobis $D^{2}=65.06439$$\text { d.f. 42, } p<.01$			
FUNCTION	1	2	3	
coefficient				
1	0.02341	0.06707	0.02929	
2	- 0.09133	- 0.11921	- 0.08603	
3	- 0.00755	0.00643	- 0.01913	
4	0.79628	0.49826	0.76950	
5	0.71010	1.23720	0.68200	
6	0.03269	- 0.14523	- 0.04076	
7	0.32027	0.51220	0.51853	
8	- 0.02717	0.12996	- 0.22059	
9	0.27478	- 0.65018	0.18314	
10	- 0.07287	1.02479	0.59170	
11	0.26363	- 0.27776	0.04493	
12	- 0.52606	- 0.00437	- 0.33347	
13	0.55594	0.80492	0.81441	
14	0.73847	0.49095	0.30320	
15	2.76380	2.53838	2.69663	
16	0.22388	0.39051	0.31701	
17	0.59488	0.16113	0.48606	
18	1.07255	0.52448	1.09750	
19	0.00001	0.00008	- 0.00002	
20	0.01564	0.42037	- 0.42815	
21	- 0.50204	0.07955	- 0.14320	
CONSTANT	-14.87447	-13.10416	-14.44636	
CLASSIFICATION MATRIX				
FUNCTION	1	2	3	TOTAL
GROUP				
1	21	4	6	31
2	1	15	4	20
3	7	4	18	29

TABLE 49

	UNDER 25,000	25,000-50,000	50,001-100,000	OVER 100,000	
group	1	2	3	4	total
SAMPLE	13	13	23	41	90
mean scores					
1	13.84615	13.30769	9.13043	16.00000	
2	3.15385	6.46154	5.21739	6.07317	
3	2.76923	3.76923	4.91304	4.95122	
4	3.97000	3.53384	4.02913	4.10536	
5	0.35385	0.42308	0.71087	0.31512	
6	3.23077	3.96154	3.73913	2.70244	
7	3.07692	3.69231	3.28261	2.16341	
8	4.92308	5.23077	5.08696	3.39024	
	4.92308	5.76923	5.52174	3.70732	
10	3.84615	4.30769	4.34783	2.53658	
11	3.76923	3.76923	4.69565	3.36585	
12	3.46154	3.46154	3.95652	1.58537	
13	4.76307	4.96231	5.18130	4.80073	
14	4.03384	4.48230	4.14304	3.72683	
15	4.06153	4.57999	4.28217	4.67561	
16	3.75538	4.08461	4.04087	3.93780	
17	3.38961	4.00000	3.82609	4.02439	
18	3.15385	2.61538	3.60870	2.36585	
19	784.23071	513.53833	1032.82593	1172.92676	
20	2.24307	2.46153	2.57521	2.05877	
2.1	2.16385	1.46154	2.95652	1.51219	
Generalized Mahalanobis ${ }^{\text {D2 }} 2=122.95631$d.f. $63, \mathrm{p}<.001$					

FUNCTION COEFFICIENT	1	2	3	4	
1	0.06360	0.01893	-0.18579	0.03195	
2	-0.09907	0.04438	0.16553	-0.02942	
3	-0.06629	-0.06151	0.08460	0.00149	
4	1.16284	0.13060	1.27500	0.89569	
5	-0.63503	-0.11157	1.80781	0.67984	
6	-0.20294	0.13147	-0.09700	-0.12720	
7	0.75928	0.78474	0.60696	0.61079	
8	-0.10451	-0.18570	-0.52488	-0.14999	
9	-0.20023	0.18545	0.25542	-0.14747	
10	0.91992	0.68344	0.46424	0.66285	
11	-0.41233	-0.31819	0.39479	-0.25283	
12	0.22003	0.26059	0.30283	-0.15917	
13	1.74201	1.32199	1.74062	1.17394	
14	-0.13093	-0.00821	-0.79907	-0.08731	
15	1.70212	2.65350	2.68391	2.55797	
16	1.26460	0.95932	0.01434	0.63609	
17	-0.32070	0.28341	-0.07271	0.74304	
18	0.76272	0.23827	0.78670	0.65838	
19	0.00014	0.00012	0.00001	0.00009	
20	-0.17657	0.56333	0.36871	-0.33973	
21	0.01907	-0.43334	0.75684	-0.00247	
CONSTANT	-14.10403	-16.02614	-17.23055	-14.22687	
CLASSIFICATION MATRIX					
FUNCTION	1	2	3	4	TOTAL
GROUP					
1	7	3	2	1	13
2	3	8	1	1	13
3	4	1	17	1	23
4	6	5	3	27	41

TABLE 50
DISCRIMINANT ANALYSIS - TYPES OF ACTIVITIES (50\% or more concentration)

GROUP	WORK STUDY	EQUIPMENT/ DEVELOPMENT MATERIALS	TRAINING. STUDENTS/ TEACHERS	RESEARCH	CURRICULUM DEVELOPMENT	TOTAL
SAMPLE	9	8	23	11	7	58
mean scores						
1	8.11111	12.37500	15.21739	11.54545	9.00000	
2	3.33333	8.87500	8.86957	5.81818	4.28571	
3	4.55556	5.37500	3.17391	2.18182	4.42857	
4	3.74333	3.54125	4.21304.	3.23000	4.40714	
5	0.55556	0.31250	0.4.4217'	0.27273	0.25000	
6	2.94444	2.81250	2.96957	2.95455	3.57143	
7	2.63333	2.43750	2.19565	2.81818	1.42857	
8	5.55556	2.87500	3.43478	2.63636	4.00000	
9	5.77778	4.12500	4.478215	3.63636	3.28571	
10	4.33333	2.37500	2.60870	1.90909	2.00000	
11	4.22222	1.62500	4.00000	2.63636	2.14286	
12	3.55556	1.62500	1.78261	1.63636	2.00000	
13	4.66444	4.59250	5.15043	4.40364	5.40571	
14	4.33666	3.42250	3.576¢5	3.81909	2.73857	
15	4.32333	4.21875	4.48434	3.76909	4.86857	
16	4.24555	4.15750	4.152691	2.86273	3.06143	
17	3.77778	3.12500	4.00000	3.09091	4.14286	
18	3.22222	3.12500	2.347133	3.27273	3.71428	
19	187.33333	110.50000	272.00006	9.09091	5147.42578	
20	2.48111	2.62500	2.05912	1.84363	2.59428	
21	1.44444	2.00000	1.39130	1.81818	1.85714	
Generalized Mahalanobis D2 $=195.98706$ d.f. 84, $p<.001$						
FUNCTIO: COEFFICIENT	1	2	3	4	5	
1	- 0.01518	0.31638	0.11809	0.14504	- 0.09620	
2	- 0.18494	- 0.01466	- 0.11847	-0.00181	- 0.03391	
3	0.33247	- 0.05456	- 0.08544	-0.03578	0.26219	
4	0.26462	- 0.73790	0.85194	1.20976	0.19886	
5	0.28617	- 0.57112	1.08162	1.04675	1.23136	
6	- 0.34224	0.62854	- 0.01656	0.20678	- 0.00915	
7	0.11979	0.21255	0.41644	0.49208	- 0.20395	
8	0.00329	- 0.52418	- 0.37939	-0.46712	0.49222	
9	0.79739	- 0.49179	0.32978	-0.67620	- 0.92148	
10	0.59965	1.34656	0.78778	0.84627	- 0.06108	
11	0.64052	- 0.66076	0.39247	-0.66787	- 0.34581	
12	- 0.48735	- 0.03227	- 0.64751	-0.07800	0.38000	
13	1.05687	0.62390	1.31846	0.69521	2.41935	
14	- 0.06080	0.45248	- 0.29653	0.57900	- 1.68422	
15	0.85317	1.72639	1.31341	1.17906	2.23790	
16	2.43666	3.96730	1.78248	0.06122	- 1.71858	
17	- 1.26318	- 3.12265	- 0.97667	0.43139	2.34299	
18	0.73433	1.01975	0.37429	1.51336	2.07695	
19	0.00068	0.00089	0.00049	0.00002	0.00074	
20	0.65706	1.06893	- 0.09361	-0.94483	1.64529	
21	- 0.92174	- 0.20753	-0.29084	-0.02444	- 0.83651	
CONSTANT	-13.07406	-12.81569	-11.79199	-9.10264	-18.95578	
FUNCTION CLASSIFICATION MATRIX						
FUNCTION	1	2	3	4	5	TOTAL
1	7	2	0	0	0	9
2	1	5	1	1	0	8
3	3	1	15	4	0	23
4	0	2	1	8	0	11
5	1	0	0	1	6	7

TABLE 51
DISCRIMINANT ANALYSIS - TOTAL FUNDING LEVELS

d.f. 63.p $<.001$

FUNCTION	1	2	3	4	
COEFFICIENT	0.18172	- 0.00692	0.05517	0.08651	
2	- 0.12449	- 0.00575	- 0.07856	-0.09699	
3	- 0.09291	- 0.13436	- 0.11077	- 0.14209	
4	1.67089	2.17377	1.27772	1.76444	
5	- 2.53206	- 0.29502	0.18028	- 1.43968	
6	0.34578	- 0.14091	- 0.02189	0.06586	
7	- 0.82426	1.43454	1.12382	1.21200	
8	- 0.38177	- 0.11761	- 0.23338	0.00154	
9	- 0.74564	- 0.07544	- 0.26133	- 0.25665	
10	1.16564	0.87922	1.01228	1.18659	
11	0.55554	0.40289	- 0.25119	- 0.11831	
12	- 0.41187	- 0.69091	- 0.09937	- 0.43936	
13	3.69866	2.28413	2.29518	3.02631	
14	- 0.15000	0.25537	0.48903	0.28419	
15	1.49984	2.44242	2.07889	1.50096	
16	0.58743	0.58503	1.33447	1.12114	
17	- 0.47300	- 0.43921	- 0.14758	0.21512	
18	2.72860	2.28599	1.79853	1.94831	
19	- 0.00001	0.00001	0.00020	0.00002	
20	1.15369	0.86383	0.72015	1.36902	
21	- 0.46641	0.02111	- 0.14563	- 0.33605	
CONSTANT	-23.61496	-24.07538	-20.52734	-25.57607	
		CLASSIFICAT	trix		
FUNCTION	1	2	3	4	TOTAL
GROUP					
1	15	1	2	4	22
2	1	9	4	2	16
3	1	4	7	3	15
4	1	4	4	14	23

TABLE 52
DISCRIMINANT ANALYSIS - R.C.U. FUNDING LEVELS

Group	$\text { UNDER } 5,000$	$5,000-9.999$	$10,000-50,000$	$\text { OVER } 50,000$	total
SAMPLE	15	10	29	20	74
mean scores					
1	14.20000	10.30000	12.72414	10.20000	
2	5.53333	4.80000	4.68965	4.65000	
3	5.60000	3.40000	4.17241	4.20000	
4	3.92000	4.05500	3.78724	3.77350	
5	0.33333	0.51000	0.55483	0.56250	
6	3.80000	2.90000	3.56896	3.55000	
7	2.90000	2.80000	3.46552	2.73500	
8	3.73333	2.90000	4.55172	5.30000	
9	4.20000	4.60000	4.93103	5.35000	
10	2.86667	2.40000	3.10345	4.40000	
11	3.06667	3.10000	3.41379	3.95000	
12	2.60000	1.90000	2.65517	3.35000	
13	4.92533	5.14400	4.99689	4.73950	
14	4.02866	3.63900	4.03620	3.83300	
15	4.10000	4.23800	4.61344	4.32050	
16	3.28000	3.98500	4.14103	3.90749	
17	3.06667	3.70000	3.89655	4.15000	
18	3.60000	3.90000	3.27586	3.40000	
19	930.00000	35.29999	1173.13770	1756.29980	
20	2.20599	2.06100	2.44655	2.34750	
21	2.00000	1.60000	3.06896	1.60000	
Generalized Mahalanobis $\mathrm{D}^{2}=88.29533$					

FUNCTION CoEfficient	1	2	3	4	
1	0.12355	0.05708	0.09542	0.06767	
2	0.02255	- 0.01042	0.08733	- 0.00776	
3	0.11654	- 0.08172	- 0.13684	- 0.06609	
4	1.01766	1.11312	0.37893	0.60347	
5	- 1.03595	- 0.72647	- 0.10533	- 0.22004	
6	- 0.30225	- 1.05297	- 1.16166	- 0.61308	
7	1.08795	1.20855	1.29126	0.80326	
8	- 0.59839	- 1.08218	- 0.57214	- 0.56182	
9	- 0.67916	- 0.33509	- 0.67402	- 0.49329	
10	0.74596	0.75341	0.56019	0.97069	
11	0.11244	0.41139	0.35128	0.11698	
12	- 0.11180	- 0.44378	- 0.19271	- 0.09910	
13	2.47835	3.04648	2.36611	2.45811	
14	1.08986	0.86439	0.67458	0.61473	
15	2.52313	2.97273	4.11975	3.03234	
16	1.17321	1.77035	2.11683	1.83249	
17	- 0.76448	0.18516	- 0.25969	0.12942	
18	2.65257	2.20511	1.72180	1.64538	
19	0.00014	0.00018	0.00030	0.00035	
20	- 0.71042	- 1.56257	- 0.96798	- 0.62917	
21	0.28689	0.38037	0.97564	0.01279	
constant	-21.21201	-23.72177	-23.58893	-20.44304	
Classification matrix					
FUNCTION	1	2	3	4	TOTAL
GROUP					
1	7	1	3	4	15
2	1	7	1	1	10
3	3	3	18	5	29
4	0	2	2	16	20

TABLE 53
DISCRIMINANT ANALYSIS - STUDENT CLASSIFICATION
(over 50\%)

GROUP	MINORITIES 1	$\underset{2}{\text { WHITES }}$	TOTAL
SAMPLE	6	23	29
MEAN SCORES			
1	11.16667	17.43477	
2	7.66667	8.08696	
3	5.50000	2.95652	
4	4.05833	4.15522	
5	0.43333	0.20652	
6	3.33333	2.71739	
7	3.08333	1.91304	
8	3.33333	2.78261	
9	3.33333	3.65217	
10	2.83333	2.69565	
11	3.00000	4.17391	
12	2.83333	2.00000	
13	5.04333	5.00826	
14	2.73000	3.83217	
15	3.98666	4.82130	
16	4.01500	3.76391	
17	3.33333	3.60870	
18	3.50000	2.73913	
19	898.33325	378.43457	
20	1.69167	2.09912	
21	1.16667	1.43478	
"Does not include those in "Sther" classification Generalized Mahalanobis $D^{2}=233.53700$$\text { d.f. 21, } \mathrm{p}<.0001$			

FUNCTION COEFFICIENT	1	2	
1	- 0.20600	0.62604	
2	- 0.79516	- 1.85415	
3	5.29127	- 1.88985	
4	26.29979	13.45496	.
5	6.07137	- 6.59140	
6	3.01355	0.56168	
7	4.08961	2.45071	
8	- 2.67666	0.10406	
9	5.18965	7.42285	
10	0.93933	- 5.68102	
11	- 0.07100	14.88105	
12	- 7.75260	-12.83148	
13	3.00289	6.48774	
14	- 1.19807	- 5.81814	
15	- 2.85073	4.35807	
16	- 7.32387	- 2.24064	
17	5.52600	-15.11925	
18	2.11500	10.90640	
19	0.00146	0.00108	
20	- 7.56655	19.69264	
21	3.82187	6.26914	
CONSTANT	-65.73798	-74.22903	
CLASSIFICATION MATRIX			
FUNCTION	1	2	total
GROUP			
1	6	0	6
2	0	23	23

TABLE 54
DISCRIMINANT ANALYSIS - TYPES OF TRAINING
(over 50\% concentration)
GROUP
SAMPLE
MEAN SCORES
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

TEACHERS
1
19
STUDENTS
2
16
TOTAL
35 MEAN SCORES

12.00000	18.37500
8.15789	6.18750
3.26316	4.31250
3.82631	4.56375
0.54053	0.15625
3.18421	2.56250
2.86842	1.96875
3.26316	2.81250
4.68421	2.87500
3.10526	2.31250
3.21053	4.43750
2.42105	2.50000
5.10894	4.96062
3.42158	4.13375
4.31052	4.74999
3.88526	3.67812
3.84210	3.50000
3.78947	2.25000
672.94727	1697.37500
1.96526	2.25062
1.94737	1.25000

Generalized Mahalanobis $\mathrm{D}^{2}=92.19011$
d.f. 21.p < . 001

FUNCTION coefficient	1	2	
1	0.78726	0.81976	
2	- 0.81817	- 0.97260	
3	- 0.36139	- 0.32550	
4	20.86571	20.45409	
5	- 5.51720	- 7.88904	
6	3.13368	3.68335	
7	4.74252	4.68469	
8	0.04150	- 0.70895	
9	1.86123	2.31297	
10	0.54702	0.18412	
11	3.34805	4.98900	
12	-11.71726	-10.91530	
13	4.72185	4.59262	
14	- 0.82189	- 1.28558	
15	- 3.63883	- 2.04769	
16	- 0.99439	- 1.30544	
17	4.74967	- 0.05298	
18	14.27347	11.80378	
19	-0.00039	0.00011	
20	-1.50342	2.92002	
21	2.84880	2.57522	
COnstant	-85.69731	-78.81743	
CLASSIFICATION MATRIX			
FUNCTION	1	2	TOTAL
GROUP			
1	18	1	19
2	0	16	16

SUMMARY MATRIX OF HEAVIEST OISCRIMII

1. Refers to 0.0 numbers.

TABLE 55
ix Of heaviest discriminant Coefficients found in tables 47 to 54

CHAPTER 6

RELATIONSHIPS

Relationships

Initially, zero-order Pearson Product Moment Correlations were calculated to assist relationships that night exist between selected variables. A correlation matrix is found in Table 56.

TABLE 56

CORRELATION MATRIX OR SELECTED VARIABLES

	Length of Project	Meeting Prime Obj.	Total Funding	R.C.U. Funding
Length of Project	1.0000	-0.0109	0.0554	0.2292
Meeting Prime Objectives		1.0000	-0.0405	-0.0191
Total Funding			1.0000	$0.7305 b$
R.C.U. Funding				1.0000

$\begin{array}{ll}\text { a. } & \mathrm{p}<.01 \text { d.f. } 96 \\ \text { b. } & \mathrm{p}<.01 \text { d.f. } 96\end{array}$
Only one correlation reached a level of significance.
The relationship between R.C. U. funding and total funding ($\mathrm{r}=.7305$) reached a highly significant level ($\mathrm{p}<.01$). The amount of variance accounted for was 53.4%. This variance is quite significant in terms of educational importance. It should be noted that the two variables (R.C. U. and Total funding) are not independent of each other. R.C. U. funding is a part of the total funding. Hence a large amount of R.C. U. funding will also contribute to a large total funding figure.

It would appear that meeting project objectives is independent of length of project and amounts of funding. Initially, the argument that more time and/or more money will increase the probability of meeting goals appears not to be valid. Further analyses had been run to test this and will be discussed later. Other factors, besides time and money, must be given consideration when assessing prospective promosals. This puts an additional burden on the funding agency when considering propesals, since length of projects and level of funding are relatively easy factors to identify, while other factors are more difficult to identify and assess.

Because of the significant relationship between total funds expended and R.C.U. funding, and the fact that they are not independent of each other, R.C.U. funding will be used in further analyses as either independent or dependent variables. When used, total funding figures will be used as classification variables.

A correlation matrix (Table 57) was developed to displav the zero-order Pearson Product Moment Correlations that were calculated on selected variables. The purpose of the Table is to give the reader an overview of relationships among variables. The ieader should be cautioned that these are zero-order correlations and do not account for any linear relationships.

A review of the data in Table 57 indicates that there are 52 correlations that reached the .05 significance level (92 d.f.), 123 correlations reached the .01 level of significance but were not underlined, and an additional 43 correlations that were significant ($<.01$ level) and accounted for at least 25% of the variance. It is interesting to note that the relationship between satisfaction generated by the project in the school system and satisfaction generated in school building personnel was quite high ($r=0.8439$); however, the amount of variance was only 70.47%. This was the highest correlation generated from this data. In all, 218 significant correlations were found. Of these, most were relationships within areas that would naturally generate significant correlations (e.g. - Table 57, degree of influence in educational practices (4) $\times(5)=.6831 ;(4) \times(6)=.7230 ;(6) \times(5)=.6398$ - all three variables are within the same construct). Variables concerned with attitudes, influencing educational practices, and satisfaction appear to be significantly related.

In order to get a better picture of relationships and how variables affect specific results in this study, multiple regression analyses were performed utilizing the BMD 03R computer program by W. T. Dixon. The listing of the variables used as either dependent or independent variables are found in Table 58. The data was analyzed for the: total group; size of the community served; type of community served (rural, suburban, urban); type of training (teacher, students). Because of the limitations of the computer program and of the data available, other regression analyses were not performed.

As a result of the volume of data produced, summary tables will appear in this chapter. The actual tables displaying the results of the analyses appear in Appendix C of this report.

Total Group (Table 59)
Table 59 is a summary of the regression analyses performed on all the data in this study. It is apparent from the anaiyses, that the amount of variance (out of 100%) accounted for by the various independent variables listed in Table 58 never rises above 38.36%. Four regressions did not reach levels of significance, therefore it would not be safe to use the results from the four in prediction.

It would appear that the degree of internal and external influence on decision making would be good predictors in this study. This is particularly true when the dependent variables are influencing educational policies, objectives, and satisfaction generated. Factors related to funding are good predictors of attitude change, as related to: purpose or thrust; vocational education; education in general; and the world of work. One might conclude that internal and external influences are more philosophical in nature and affect those areas related to philosophy (e.g. - goals, objectives, satisfaction). It is also possible that internal and external influences have more immediate effect, and that in most cases the goals of projects are also

TABLE 57
CORRELATION MATRIX OF SELECTEL

	Length of Project	$\begin{gathered} \text { Mouting } \\ \text { Prime } \\ \text { Objectives } \end{gathered}$	Unexpected Outeomes	INFLUENCING EDUCATIONAL PRACTICES AT:					Mean Internal Influence	Mean External Influence	SATISFACTIDN GENERATED BY THE PROJECT					
				$\begin{aligned} & \text { Building } \\ & \text { Levol } \end{aligned}$	$\begin{gathered} \text { Local } \\ \text { Community } \end{gathered}$	Countyl Intermediate	State	National			Traincos	Staft	School Bldg. Personnel	School System	County System	R.C.U.
			(3)	(4)	(5)	(6)	171	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)
(1)	1.0000	0.0109	0.1736	0.1771	0.1744	0.1566	0.1181	0.1372	0.0978	0.1278	0.1377	0.1020	-0.0677	-0.0599	0.0765	0.0948
(2)		1.0000	-0.0437	0.0772	0.0284	-0.0678	0.1911	0.0789	$0.3973{ }^{\circ}$	0.1719	0.3035**	0.2325	$0.2328{ }^{\circ}$	0.2819**	0.1871	0.2324°
(3)			1.0000	0.1883	0.1800	$0.3019 *$	0.1977	0.3000°	0.1558	0.1514	-0.0038	-0.0967	-0.2041	0.1558	-0.0742	-0.0397
(4)				1.0000	$0.6831{ }^{\circ}$	0.7230**	0.3124**	0.5582**	0.1613	$0.4621{ }^{\circ}$	0.1791	0.1259	0.1945	0.2419°	0.1242	0.1855
(5)					1.0000	$0.6398{ }^{\circ}$	0.1115	0.4670**	0.1984	$0.4091{ }^{\circ}$	0.2060°	0.0836	-0.0166	0.0127	-0.0448	0.1337
(6)						1.0000	0.4479**	$0.5471{ }^{\circ}$	0.0115	0.3769°	0.0836	0.0506	0.0067	0.0307	0.0111	0.1609
(7)							1.0000	0.5213**	0.1704	0.3590°	0.1407	0.2510°	0.1163	0.1674	0.2295^{*}	0.3573°
(8)								1.0000	0.0357	$0.2896{ }^{\circ}$	0.0919	-0.0258	0.0213	0.1455	0.1049	$0.2908{ }^{\circ}$
(9)									1.0000	0.4374°	0.2713**	0.2291	0.1984	0.2334°	0.1253	0.2234°
(10)										1.0000	0.1978	0.2772**	0.3455**	0.4248°	0.2171°	0.4118°
(11)											1.0000	0.7252**	$0.5364{ }^{\circ}$	0.5324**	0.3148°	0.3355°
(12)												1.0000	0.5842**	0.5686**	0.4105°	0.3501°
(13)													1.0000	$0.8439{ }^{\circ}$	0.5865**	0.4080°
(14)														1.0000	$0.5381{ }^{\circ}{ }^{\circ}$	0.4759°
(15)															1.0000	0.5379
(16)																
(17)																1.0000
(18)																
(19)																
(20)																
(21)																
(22)									-							
(23)																
(24)																
(25)																
(26)																
(27)																
(28)								-								
(29)																
(30)																

${ }^{\bullet} p<.05$, d.f. 92

- "p<.01. d.f. 92

Correlations that generate over $\mathbf{2 5 \%}$ of the variance are in bold type.

TABLE 57
tion: matrix of selecteo variables

ERATEO BY THE PROJECT

School System	County Systom	R.C.U.	Depr. of Ed.
(14)	(15)	(16)	(17)
0.0599	0.0765	0.0948	0.1368
0.2819°	0.1871	0.2324°	0.2132°
0.1558	-0.0742	-0.0397	-0.0895
0. 2419^{*}	0.1242	0.1855	0.0959
0.0127	-0.0448	0.1337	0.1400
0.0307	0.0111	0.1609	0.0492
0.1674	0.2295°	$0.3573{ }^{\circ}$ -	0.3307
0.1455	0.1049	0.2908**	0.1949
$0.2334{ }^{\circ}$	0.1253	0.2234°	0.2208^{*}
$0.4248{ }^{\circ}$	0.2171°	0.4118°	0.3671°
$0.5324^{\text {• }}$	0.3148°	0.3355° *	0.2420*
$0.5686{ }^{\circ}$	0.4105°	$0.3501{ }^{\text {® }}$	0.4082**
$0.8439{ }^{\bullet \bullet}$	0.5865**	0.4080°	0.3503^{*}
1.0000	$0.5381{ }^{\circ}$	0.4759°	0.4194°
	1.0000	0.5379**	$0.5352 *$
		1.0000	$0.7213^{\circ 0}$
			1.0000

TABLE 58

LISTING OF VARIABLES UTILIZED IN THE MULTIPLE REGRESSION ANALYSIS

Variables (${ }^{1}$ or (D) ${ }^{2}$	Q-O\#
Length of Project (1)	
X of Prime objectives (D)	5
$\overline{\mathrm{X}}$ of Unexpected outcomes (D)	6
Influence Educational Practices in:	8
Building or neighborhood (D)	a
Local Community and/or district (D)	b
County/Intermediate Unit (D)	c
State (D)	d
National (D)	e
$\overline{\bar{X}}$ Internal influence (I)	10A
$\overline{\mathrm{X}}$ External influence (I$)$	10 B
Satisfaction Generated in:	13
Trainee (D)	à
Participants other than trainees (D)	a
School Building Personnel (D)	c
School System (D)	d
County System/Intermediate Unit (D)	e
R.C.U. (D)	f
State Department of Ed. (other than R.C.U.) (D)	
Changes in Attitude towards:	14
Purpose or thrust (D)	a
Vocational Education in General (D)	b
Education in General (D)	
The World of Work (D)	d
Themselves (D)	e
Others (peers) (D)	f
Others (non-peers) (D)	g
Ultimate Effects on Targeted Populations (D)	15
R.C.U. Funding (I)	16B
Adequacy of R.C.U. Funding (I)	16 C
Per Unit Cost (1)	18
$\overline{\mathrm{X}}$ Assistance Received (1)	20
Effectiveness of Voc. Ed. Advisory Council (1)	25B

$1^{(1)}=$ independent or predictor variable
2 (D) $=$ dependent or predicted variable

TABLE 59

SUMMARY OF MULTIPLE REGRESSION ANALYSES FOR TOTAL GROUP

Dependent Variable	Independent Variable Contributing the largest amount of the Varlance Accounted for	Per Cent of the Variance Accounted for
$\overline{\mathbf{X}}$ Prime Objectives	$\overline{\bar{X}}$ Internal Influence (. 09468)	24.19
\bar{X} Unexpected Outcomes	---	n. s .
Influencing Educational	$\overline{\mathrm{X}}$ External Influence (. 17804)	
$\begin{array}{r} \text { Practices - Building } \\ \text { Level } \end{array}$	Effectiveness of Voc. Ed. Adv. Council (. 05212)	36.64
- Local Community	$\overline{\mathrm{X}}$ External Influence (11918) Adequacy of R. C. U. Funding (. 10199) Effectiveness of Voc. Ed. Adv. Councll (. 06747)	38.36
- County Level	$\overline{\mathrm{X}}$ External Influence (.16043)	23.83
- State Level	---	n. 8.
- National Level	$\overline{\mathrm{X}}$ External Influence (. 08596) Adequacy of R.C.U. Funding (. 06350)	19.60
Satisfaction Generated		
- Trainees	$\overline{\mathrm{X}}$ Internal Influence (. 06712) (Negative) Per Unit Cost (.03742)	17. 19
- Participants other than trainees	---	n. 8.
- School Building Personnel	$\overline{\mathrm{X}}$ External Influence (.08845) Effectiveness of Voc. Ed. Adv. Council (. 04733)	21.53
- School System	$\begin{aligned} & \overline{\mathrm{X}} \text { Internal Influence (.05780) } \\ & \overline{\mathrm{X}} \text { External Influence }(1.3576) \end{aligned}$	27.53
- County System	---	
R.C.U.	$\begin{aligned} & \overline{\mathrm{X}} \text { Internal Influence (.04631) } \\ & \overline{\mathrm{X}} \text { External Influence }(.11822) \end{aligned}$	19.99
Stats Dept. of Ed. (other than R.C.U.)	$\begin{aligned} & \bar{X} \text { Internal Influence }(.04343) \\ & \overline{\mathrm{X}} \text { External Influence }(.08475) \end{aligned}$	15.92
Attitude Changes		
- Purpose or Thrust	Length of Project (. 04394) Adequacy of R.C.U. Funding (. 11720)	28.56
- Voc. Ed. In General	Adequacy of R.C.U. Funding (. 12600) (Negative) Per Unit Cost (.08030) X Assistance Received (. 05115)	34.79

TABLE 59 (continued)

Dependent Variable	Independent Variable Contributing the largest amount of the Variance Accounted for	Per Cent of the Variance Accounted for
Attitude Changes (cont'd)		
- Education in	R.C.U. Funding (. 06299)	
General	Adequacy of R.C.U. Funding (.06810) (Negative) Per Unit Cost (.07153)	32.30
- World of Work	R.C. U. Funding (.06964)	
	Adequacy of R.C.U. Funding (.05278)	31.81
	Effectiveness of Voc. Ed. Advisory Council (.05785)	
- Themselves	$\overline{\mathrm{X}}$ Internal Influence (.13211)	27.63
- Others (peers)	$\overline{\mathrm{X}}$ External Influences (.16916)	
	Adequacy of R.C.U. Funding (.06037)	33.11
- Others (non-peers)	$\overline{\mathrm{X}}$ External Influence (.09667)	27.01
- Effects on Targeted Population	$\overline{\mathrm{X}}$ Internal Influence (${ }^{\text {(10685) }}$	
	$\overline{\mathrm{X}}$ Assistance Received	29.06

more immediate in nature; while attitudes might be more difficult to alter, and that such alterations take time and money.

The effectiveness of Vocational Education Advisory Councils appears to manifest itself - particularly with regards to influencing educational practices. The adequacy of R.C.U. funding also appears to be a general predictor across the variables.

Summary

The degree of internal and external influences on project directors' decisions are good predictors on the dependent variables used in this study. Funding factors also appear to be good predictors (adequacy of R.C.U. funding, R.C.U. funding, per unit costs). Assistance received and the effectiveness of Vocational Education Council are also important factors when studying the total group.

Size of the Community Served

Projects were divided by the size of the community served (less than $\mathbf{2 5}, 000$, $\mathbf{2 5 - 5 0}, 000,50-75,000$, over 75, 000). The intent of the following analyses was to determine whether projects serving different size communities had selected variables, affecting (in this case predicting) the outcomes of the projects (refer to

Table 58). It was hoped that independent (predictors) variables could be identified. Only multiple regression analyses that reach the .05 or above level will be reported; all the analyses can be found in Appendix C.

Less than 25,000 (Table 60)

The variables that best predict outcomes for this group appear to be: the degree of internal and external influence on project directors decisions, per unit costs (negatively), effectiveness of the Vocational Education Advisory Councils, and length of the project. It also appears that these predictors are rather strong. The total percents of variance accounted for in the significant regressions were very high ($92.60 \%-99.37 \%$) and hence the relationships appear to be quite meaningful. The strongest (or most powerful) are the internal and external influence variables. This predicting the degree of meeting goals, influencing educational practices at the building level, satisfaction generated in trainees, and changing attitudes were influenced most (in terms of the variables used) by internal and external influences on director's decisions.

25,000-50,000 (Table 61)

Only four dependent variables could be significantly predicted by the other variables used in the analyses - they were: satisfaction of trainees; satisfaction in county/intermediate unit; change in attitude about vocational education; and ultimate effects in targeted population. Factors related to R. C. U. funding appear to be the most frequent important predictors, however, adequacy of R.C.U. funding had a negative effect. It is interesting to note that internal influence on project director's decisions appeared to be the most significant factor on reaching the ultimate goals of targeted populations. Again the amount of variance accounted for was extremely high (93.28-99.11).

50,000-100,000 (Table 62)

In the two cases where the variables could be predicted, the factors were the same and accounted for almost the same amount of variance. It also appears that adequacy of R.C.U. funding and $\overline{\mathrm{X}}$ assistance received, has almost equal weights for predicting changing attitudes. What is interesting is that they had opposite effects (positive for purpose or thrust, negative for education in general). Thus it appears that the adequacy of R.C. U. funding and assistance received are positive forces in changing attitudes towards purpose or thrust of the project, and they are negative forces in changing attitudes towards education in general. The total amounts of variance accounted for was not as high for the $50,000-100,000$ group, as the variances accounted for within the other two population groups.

SUMMARY OF MULTIPLE REGRESSION ANALYSES REACHING SIGNIFICANT LEVELS LESS THAN 25,000

Dependent Variable	Independent Variable Contributing the largest amount of the Variance Accounted for	Per Cent of the Variance Accounted for
$\overline{\mathrm{X}}$ Prime Objectives	$\overline{\mathrm{X}}$ Internal Influence (. 54449) (Negative) Effectiveness of Voc. Ed. Advisory Council (.28798)	92.60
$\frac{\text { Influencing Educational }}{\text { Practices - Building }}$	$\overline{\mathrm{X}}$ External Influence (.50794) Effectiveness of Voc. Ed. Adv. Councils (.17737)	93.58
Satisfaction Generated In - Trainees	```X External Influence (.27396) Adequacy of R.C.U. Funding (.16'!21) (Negative) Per Unit Cost (.32416) \overline{X}}\mathrm{ Assistance received (.10188)```	96.52
Changes in Attitudes - The World of Work	(Negative) $\overline{\mathrm{X}}$ Internal Influence (. 12374) $\overline{\mathrm{X}}$ External Influence (.37483) (Negative) Per Unit Costs (.29986)	99. 37
- Themselyes	$\overline{\mathrm{X}}$ External Influence (. 35178) (Negative) Per Unit Costs (. 4478 1)	99.02
- Others (peers)	Length of Project (. 123121) $\overline{\mathrm{X}}$ External Influence (.306791) (Negative) Per Unit Costs (.39105)	97.07
- Others (non-peers)	Length of Project (. 123121) $\overline{\mathrm{X}}$ External Influence (.306791) (Negative) Per Unit Costs (. 39105)	97.07

TABLE 61

SUMMARY OF MULTIPLE REGRESSION ANALYSIS REACHING SIGNIFICANT LEVELS 25,000 - 50, 000

Dependent Variables	Independent Variable Contributing the largest amount of the Variance Accounted for	Per Cent of the Variance Accounted for
		A.

TABLE 62
SUMMARY OF MULTIPLE REGRESSION ANALYSES REACHING SIGNIFICANT LEVELS 50,000-100,000

Dependent Variable	$50,000-100,000$	Independent Variable Contributing the largest amount of the Variance Accounted for	Per Cent of the Variance Accounted for
Changes in Attitudes:	Adequacy of R. C. U. Funding (.20784)	71.49	
Purpose or Thrust $\overline{\mathrm{X}}$ Assistance Received (.24344)			
Education in General	(Negative) Adequasy of R.C.U. Funding (.20784) (Negative) $\overline{\mathrm{X}}$ Assistance Received (.24344)	61.20	

Over 100 000 (Table 63)
R.C. U. funding factors appear to be the best predictors for this group of projects. Internal influence (mostly negative) and external influence are next largest predictors. Assistance received during the projects is also a significant variable to be considered. Although the R.C.U. funding variables appear throughout the analyses, they appear to be particularly strong in the areas of changing attitudes towards selected stimuli.

It should be noted that internal influence was the strongest (and positive) factor in predicting the ultimate effects of the program on targeted populations. Adequacy of R.C. U. funding and assistance received also played a major role. The amount of variances accounted for in this group is less than the other three groups. Actually the figures (percent of variance accounted for) for the "over 100,000" group approach those for the total group (refer to Table 59). This might be caused by the fact that 41 projects fell into that group, while 23 were in the " $50-100,000, "$ 13 in the $\$ 25-50,000, "$ and another 13 in the "under-25, 000 " group. Thus the "over $100,000^{\prime \prime}$ was the largest group affecting the result found in the total group. If this is the case, then the "over 10C,000" group becomes even more significant in this study.

Summary

Although more variables could be predicted in the "over 100,000 " group, the smallest two groups had factors that were almost, totally accounted for by the variables used as predictors. This would indicate that when variables did have an effect, for those in the two lower population size groups, the effect or influence was quite strong. The number of significant regressions might be a function of the size of each group - with the "over 100,000 " having so many more than the others, thus its data would generate mores significant regressions because the degrees of freedom are greater. It is alsu possible that the variables used as predictors in this study were more influential with the projects serving 100,000 and over communities than those serving smaller communities.

It is apparent that the influence from internal and external sources are quite important when looking at them in combination. The most significant (in terms of numbers) factors are those related to R.C. U. funding - with the rating of the adequacy of R.C.U. funding being the largest factor. Assistance received from various sources also appears to be quite important. It also appears that R.C. U. funding is more important in attitude changing than in other areas. This effect appears to exist in all groups except the "under 25,000." In fact, the lowest group appears to be more affected by internal and external factors than by anything else. Per unit costs tend to have a negative effect on the predicted variables, while the effectiveness of Vocational Education Advisory Councils and length of the programs have isolated effect.

Type of Community Served (Urban, Suburban, Rural)

Projects were then broken down into three groups (urban, suburban, and rural), and the data was reanalyzed utilizing the regression analyses approach as

TABLE 63

SUMMARY OF MULTIPLE REGRESSION ANALYSES REACHING SIGNIFICANT LEVELS OVER 100,000

Dependent Variables	Independent Variable Contributing the largest amount of the Variance Accounted for	Per Cent of the Variance Accounted for
$\overline{\mathbf{X}}$ Prime Objectives	$\overline{\mathrm{X}}$ Internal Influence (.18486)	45.05
Influencing Educational		
Practices	$\overline{\mathrm{X}}$ External Influence (.13942)	
	R.C.U. funding (.14037)	
	Adequacy of R.C.U. funding (. 10080	48.36
- County/Intermediate Unit	Adequacy of R.C.U. funding (.20986)	42.52
- National Level	Adequacy of R.C.U. funding (.22505)	45.83
$\frac{\text { Satisfaction Generated In: }}{\text { - Trainees }}$	$\overline{\mathrm{X}}$ Internal Influence (. 11491)	39.99
- Participants (Other than trainees)	$\overline{\mathrm{X}}$ Assistance Received (.11291)	43.22
- School Building Personnel	(Negative) $\overline{\mathrm{X}}$ Internal Influence (. 11057) $\overline{\mathrm{X}}$ External Influence (. 15107)	40.09
- School System	$\begin{aligned} & \text { (Negative) } \overline{\mathrm{X}} \text { Internal Influence (. 12207) } \\ & \mathrm{X} \text { External Influence (. 19599) } \\ & \overline{\mathrm{X}} \text { Assistance Received (. 12667) } \end{aligned}$	47. 74
- County System/ Intermediate Unit	$\overline{\mathrm{X}}$ Assistance Received (. 16842)	40.73
- R.C.U.	$\begin{aligned} & \text { (Negative) } \overline{\mathrm{X}} \text { Internal Inf. (. 14674) } \\ & \overline{\mathrm{X}} \text { External Influence (. } 18947) \\ & \overline{\mathrm{X}} \text { Assistance Received (.16673) } \end{aligned}$	56.83
- State Dept. of Education (Other than R.C.U.)	$\begin{aligned} & \bar{X} \text { Internal Influence (. } 14400) \\ & \bar{X} \text { External Influence (.13446) } \\ & \overline{\mathrm{X}} \text { Assistance Received }(.14441) \end{aligned}$	45.03
Changes in Attitude Towards: - Purpose or Thrust	Adequacy of R.C.U. funding (.32861) $\overline{\mathrm{X}}$ Assistance Received (. 16057)	62.09

TABLE 63 (continued)

Dependent Variables	Independent Variable Contributing the largest amount of the Variance Accounted for	Per Cent of the Variance Accounted for
Changes in Attitude		
$\frac{\text { Towards: }}{- \text { Voc. }}$ Ed. in General	R.C. U. funding (.11319)	54.37
	Adequacy of R.C.U. funding (.28535)	
- Education in General	R.C. U. funding (. 10913)	
	Adequacy of R.C.U. funding (. 16341) $\overline{\mathrm{X}}$ Assistance Received (.19618)	70.35
- The World of Work	R.C. U. funding (. 11108)	49.77
	Adequacy of R.C.U. fundi.g (. 20407)	
- Themselves	$\overline{\mathrm{X}}$ Internal Influence (.37232)	53.88
- Others (peers)	$\overline{\mathrm{X}}$ External Influence (.24253)	
	R.C. U. funding (.10631)	57.21
	Adequacy of R.C.U. funding (.11928)	
- Others (non-peers)	$\overline{\mathrm{X}}$ External Influence (.13843)	
	R.C. U. funding (. 10946)	57. 16
	Adequacy of R.C.U. funding (.1661)	
- Ultimate Effects on Targeted Population	$\overline{\mathrm{X}}$ Internal Influences (.264271)	
	Adequacy of R.C.U. funding (. 11145)	66.72

described before. There were 31 projects in the urban group, 20 in the suburban group, and 29 in the combined rural group. Appalachia and non-Appalachia were merged to increase the sample size for analy ses purposes.

Urban (Table 64)

Satisfaction and attitude variables were the ones that could best be predicted in this group. The adequacy of R.C.U. funding appears to be consistently the best and most reliable predictor of outcomes. Internal influence was the next largest predictor. Per unit costs again had negative effects. The degree of R.C.U. funding appeared to be most influential with attitude changes, while internal influence had its effects on satisfaction generated by projects, and ultimate effects of the projects on targeted population. The amounts of variance accounted for appears to be quite high, although the range is quite wide (47.56 to 90.02).

TABLE 64

SUMMARY OF MULTIPLE REGF.ESSION ANALYSES REACHING SIGNIFICANT LEVELS URBAN

Dependent Variables	Independent Variables Contributing the largest amount of the Variance Accounted for	Per Cent of the Variance Accounted for
Irfluencing Educational	R.C.U. funding (. 13458)	
$\frac{\bar{p}}{\text { ractices }}-\text { Building Level }$	Adequacy of R.C.U. funding (. 30123) $\overline{\mathrm{X}}$ Assistant Received (.1405 $)$	76.66
- Local Level	Adequacy of R. C. U. funding (.40648)	72.54
Satisfaction Generated In: - Trainee	$\overline{\mathrm{X}}$ Internal Influence (. 24346) (Negative) Per Unit Costs (. 17814)	50.48
- Participants (other than Trainee)	$\overline{\mathrm{X}}$ Internal Influence (.34622)	48.43
Changes in Attitude		
Towards: - Purpose or Thrust	Adequacy of R. C. U. funding (. 39690)	65.92
- Voc. Ed. in General	Adequacy of R. C. U. funding (.58068)	83.73
- Education in General	Adequacy of R. C. U. funding (.55140)	83.69
- The World of Work	R. C. U. funding (. 11075) Adequacy of R. C. U. funding (. 65097)	90.02
- Themselves	$\overline{\mathrm{X}}$ Internal Influence (. 35402) (Negative) Per Unit Costs (. 25214)	69.67
- Others (peers)	Adequacy of R. C. U. funding (.53177)	75.36
- Others (non-peers)	Adequacy of R. C. U. funding (.42304)	74.09
- Ultimate Effects on Targeted Population	$\overline{\mathrm{X}}$ Internal Inflxence (.29552)	47.56

Suburban (Table 65)

For all four variables that can be predicted, length of the project, internal influence (either positive or negative), and assistance received appear to be the most influential. Factors concerned with influencing educational practices and ultimate effects were influenced by the three variables just listed. Much of the four variables' variances appeared to be accounted for by the independent factors in the analysis (variances accounted for ranged from 72.46 to 82.59) quite evenly.

Rural (Table 66)

It appears that the amount of external influence has an effect on rural projects as it relates to influencing educational policies at the building, local, and county levels. This appears to be particularly true at the local (district) level. Attitudes towards vocational education appear to be affected by the length of the projects and assistance received by the project directors. These independent factors also appear to be quite strong in the prediction model.

TABLE 65

SUMMARY OF MULTIPLE REGRESSION ANALYSES REACHING SIGNIFICANT LEVELS SUBURBAN

Dependent Variables	Independent Variables Contributing the largest amount of the Variance Accounted for	Per Cent of the Variance Accounted for
Influencing Educational	Length of Project (.28267)	
Practices	$\overline{\mathrm{X}}$ Internal Influence (.26987)	82.59
- Building Level	$\overline{\mathrm{X}}$ Assistance Received (.20407)	
- Local Community	Length of Priject (. 13858)	
	(Negative) \bar{X} Internal Inf. (.21218) $\overline{\mathrm{X}}$ Assistance Received (.24673)	73.23
- County Level	Length of Project (. 18014)	
	(Negative) \bar{X} Internal Inf. (. 15327) X Assistance Received (.26951)	72.46
- Ultimate Effects in Targeted Population	Length of Project (. 20614)	
	\bar{X} Internal Influence (. 27783)	76.89
	X Assistance Received (.13190)	

TABLE 66

SUMMARY OF MULTIPLE REGRESSION ANALYSES REACHING SIGNIFICANT LEVELS RURAL

Dependent Variables	Independent Variables Contributing the largest amount of the Variance Accounted for	Per Cent of the Variance Accounted for
Influencing Educational		
Practices		
- Building	$\overline{\mathrm{X}}$ External influence (.41576)	55.80
- Local Community	$\overline{\mathrm{X}}$ External influence (.78176)	82.10
- County Level	$\overline{\mathbf{X}}$ External influence (.43789)	57.51
Changes in Attitude		
Towards: - Voc. Ed. in General	$\begin{aligned} & \text { Length of Project (. 33939) } \\ & \overline{\mathrm{X}} \text { Assistance Received (. 10880) } \end{aligned}$	66.71

Summary

The results indicate that projects in urban communities are more sensitive to the effects of the selected variables, used in this study, than are projects from either rural or suburban communities. These results are in keeping with the results found when comparing projects according to the size of community served since urban communities also tend to be large in population.

Internal influence appears to be quite important to urban and suburban projects, while external-influence is only important to rural projects. R.C.U. funding appears to be only a factor to urban projects, while assistance received appears to be a significant factor to the suburban group. Length of the project also appears to be influential within the suburban projects. Across all groups, internal and external influence and R.C.U. funding appear to be factors in predicting outcomes; but as just indicated, these factors have different effects on the different groups.

Types of Training

All training programs that dealt primarily (over 50%) with students, and those that dealt primarily with teachers were analyzed. Since few programs dealt with "adults," these programs were not considered in the analyses. There were 19 programs that trained/educated teachers/other professionals, and 16 programs that trained students.

Teachers/Other Professionals (Table 67)

The independent variables used in the analyses were only effective in predicting outcomes for those variables concerned with influencing educational practices (building, county, state). Again internal and external factors played a major role, however, the effectiveness of vocational education advisory councils were the most significant. It would appear that there is a strong relationship among training teachers, the Advisory Councils, and influencing educational practices. The responses to question $\mathrm{Q}-\mathrm{O} \# 8$ (incluencing educational practices) might have been answered in terms of vocational education. Thus the influences at the county/intermediate unit and state levels might be directed towards vocational education teaching, while the local or district level implies non-vocational education practices. Hence, directors responding to the question felt their projects' influerce was being felt only in vocational education domains closest to them (this would be particularly relevent to training programs).

TABLE 67

SUMMARY OF MULTIPLE REGRESSION ANALYSES REACHING SIGNIFICANT LEVELS TEACHERS/OTHER PROFESSIONALS

Dependent Variable	Independent Variables Contributing the largest amount of the Variance Accounted for	Per Cent of the Variance Accounted for
Influencing Educational	$\overline{\mathrm{X}}$ External Influence (.10043)	
Practices	R.C.U. funding (. 16023)	78.07
- Building Level	Effectiveness of the Voc. Ed. Advisory Councils, (.40373)	
- County Level	.Vegative) $\overline{\mathrm{X}}$ Internal Influence (. 18457) Effectiveness of the Voc. Ed. Advisory Councils (.39230)	74.16
- State	$\overline{\mathrm{X}}$ External Influence (.24056) Effectiveness of the Voc. Ed. Advisory Councils (. 29045)	77.43

Students

Although several regression analy ses approached levels of significance, none did - hence they are not being reported in this chapter. The actual analyses appears in Appendix \mathbf{C}.

It is obvious that the independent variables were not strong enough to predict, beyond the chance level, the dependent variables for those programs dealing primarily with students. This appears to be in keeping with the results of the discriminant analyses, where so many factors sensitized the training groups, thus it would be difficult to isolate any one, or group of factors.

Chapter Summary

The purpose or function of this chapter was to look at meaningful relationships that might exist among the variables. It also had another important thrust, and that was to look at selected variables, in linear relationship with each other, that could be used in predicting effects.

Since the unit of analysis was the project, sample size per cell of analyses became a limiting factor. This required merging of groups to enable analysis, and at times analysis that might have been of interest could not be attempted.

Initially there were many statistically significant relationships among the variables - very few might be considered educationally significant (e.g., high correlations). Factors within the same family of variables appeared to be related. There also appeared to be relationships among changing attitudes, influencing educational practices, and satisfaction generated by the projects. To get a more accurate picture of how selected variables interrelated and functioned with in specific groups of projects, a multiple regression analyses approach was used. To be consistent, the same set of variables was used as independent factors on twenty-two different dependent variables. The goal of the many analyses was to identify those variables of interest that might consistently play a role in determining outcomes.

Within groupings there were many differences in the ability of variables to be good predictors. However, there did appear to exist important and consistent relationships.

Within the "total" group, R.C. U. funding variables (R.C. U. funding and adequacy of R.C.U. funding) had a significant effect on changing attitudes (the relationships were positive). Although it would be difficult to prove at this point, it does appear that more R.C. U. funding (which should raise the level of adequacy) would have a positive effect on attitude changes. Internal and external influences in decision making, plus Advisory Councils, appear to influence educational practices outside the projects (e.g. the ripple effect on other areas). This information recognizes the interrelationship of other factors on projects. Thus it would appear that project directors desiring to have an effect in education should recognize and utilize these factors. It would also seem desirous to have such factors built into proposals. Directors should be sensitive enough to use these factors constructively, otherwise they might be limiting the projects' effects and effectiveness.

When the projects were broken down according to the size of community served, types of communities, and types of programs, differences did appear. A complete description preceded this summary and will not be covered again, however, we will discuss the major findings.

Again R.C.U. funding variables appear to be a major influence on outcomes when the total group was broken down by size of community served. R.C.U. funding variables apriear to have the greatest effect on attitudes. Internal and external influence factors were also important - they were particularly strong in projects serving the smallest size communities. Assistance received from various sources was also influential. Projects serving the largest size communities appear to be more sensitive to the variables studied. It does appear that variables within the domains of satisfaction generated by the projects and attitude changes can be predicted, and hence are related to the input data studied.

The degree of R.C.U. funding appears to affect attitudes and influence educational practices of the projects in urban cammunities. This effect was not apparent at the suburban and rural levels. Length of projects, internal influences, and assistance received were the strongest factors at the suburban level. External influences were important at the rural level. Projects in urban communities appear to be more sensitive to the variables studied, than projects in either the suburban and rural area. Therefore, proposals from urban communities should consider this fact in their designs.

As stated earlier, external influence played a major role in rural projects. Whether this is a function of smaller projects, the less complex organizational structure usually found in rural communities, the nature of vocational programs geared to rural communities, or closer "power" lines, is rather moot. However, the lines of external communication must be considered when looking at projects in rural communities. The ability of suburban projects to influence educational practices (ripple effect) appears to be affected by the length of the project, assistance received, and negatively by internal influence. Thus longer projects that received outside support influenced some educational practices within this group, Internal influences had a negative effect, thus as the internal influence decreased, the ripple effect increased. One could conclude that internal influence interferred with extending the influence of projects.

Programs concerned with training/educating teachers were affected by inte:nal and external influences and the effectiveness of Vocational Education Advisory Councils on influencing educational practices. Given that, training programs for teachers would hopefully influence educational practices, this info:mation is extremely critical. Designing of such programs should therefore be cognizant of these relatinnships; or when evaluating such programs, these factors should be considered.

Length of projects, internal and external influence, R.C. U. funding, adequacy of such funding, per unit costs, assistance received, and the effectiveness of Vocational Education Advisory Councils did not appear to be the significant predictors of outcomes for programs involved in training students. Other factors related to outcomes may be playing a role in training programs for students, but not the ones used in the analyses.

In terms of numbers alone (refer to Table 68) the adequacy of R.C.U. funding is the major factor, followed by external and internal influence in that order. If one were to consider both external and internal influence in combination, it is apparent that influence outside the project director himself play a major role in outcomes.

Assistance received from various sources also are significant. R.C.U. funding should be considered an extension of an adequacy of R.C.U. funding. Tiis, in combination with the adequacy measure, makes the R.C.U. finding variables very significant.

TABLE 68

NUMBER OF TIMES THE VARIAELE		
SIGNIFICANT CONTRIBUTORS TO PREDICTING		
	DEPENDENT	
		VARIABLES
Rank	Va	rbles
	Adequacy of R. C. U. funding	
1	X External Influence	32
2	X Internal Influence	30
3	X Assistance Received	2.7
4	R. C. U. Funding	23
5	Per Unit Costs	14
6	Effectiveness of Voc. Ed. Adv. Councit	10
7.5	Length of Projects	9
7.5		9

Per Unit Costs tends to have a negative effect. This effect might be a function of: the inaccurate estimations of per unit costs; the lack of such information for data analysis; per unit costs might be meaningless in a project that must be considered a totality by the director; or in the nature of projects, this factor is just not a significant consideration. The effectiveness of Advisory Councils tended to be felt by training programs and/or projects serving small populations. The influence of the length of the project appears to be felt by projects serving suburban communities, as well as in terms of changing or affecting attitudes. However, it does appear, along with Vocational Education Advisory Councils to be the least effective of the predictor variables studied.

It should be noted again, that this study was based on a questionnaire - opinionnaire and interviews, thus the information supplied were perceptions of project directors. Aside from the on-site visitations, no attempt was made to varify the data out in the community. The major function of the multiple regression analyses was to help establish relationships that existed in R. C. U. funded projects from 1966 to March of 1972, so as to shed light on the innerworkings of such projects and what factors might lead to, or influence, success.

CHAPTER 7

GENERAL FINDINGS, CONCLUSIONS AND RECOMMENDATIONS

Introduction

The purpose of this chapter is to review the major findings of this study - it is not to review all the findings, the preceding pages has done this in depth.

The reader again is cautioned that the data used in this study comes directly from project directors. As indicated earlier, a total impact study would have to include: surveying trainees, the business community, and school personnel; and analyses of census data collected by local, state and national governmental agencies. This should be done over the life of projects, as well as after their completion. This project didn't attempt to do this, rather it attempted to focus on the perceptlons of project directors and key State Department Vocational Educators as they percelved their project, its outcomes and operations of R.C.U. The projects were confined to all R.C. U. funded projects from 1965 to March of 1972. An opinlonnairequestionnalre and on-site visitations were the techniques used to collect all the data.

Generai Findinge

Data Sources

Although there were many reports und documents describing individual projects, the Pennsylvania's Abstracts of Research and Related Materials in Vocational Education, Volumes I, II, was the major source of project descriptions. The projects described in this document were categorized in seven general areas. These areas were: Curriculum Development - Scope and Sequence and Guldance: Research: Material Development: Training Programs - Teacher/Other Professionals; Training Programs - Students and/or Adults; Purchase and/or Updating of Equipment; and Work Study. Also studled were the Arnold Report, Labor Market Studiea, V. E. M. I.S. Reports, V.E I.N. and certain other follow-up studies as conducted by R.C.U.

Interdepartmental Relationshipg

1. The interdepartmental relationshlps between R.C. U. and other departments within the Bureau of Vocational Education appears to be quite relaxed and good. Excelient personnel relations appear to exist.
2. There seems to be a need to extend more formal and structured Lines of communications between R.C. U. and other departments, rather than the relying on informal and formal ones that now exist.
3. Solicited projects originating from departments outside of R.C. U. also seems to be desirous. It would appear that many departments are brought in as consultants on projects already proposed, the department of vocational education would therefore like to see more requests for solicited proposals irom R.C.U. workirg in consort with other departments.
4. ' The impact of R.C. U. at the state level was evidenced through such studies as Arnold report, supply demand studies, V.E. M.I.S., V.E.I.N. and the data input to the state plan for vocational education.

Description of The Respondents and Impact

Populations

1. The largest number of projects went to local legal educational authorities (school districts), while Area Vocational-Technical Schools received about 25% of all the projects.
2. The funded projects were almost evenly distributed between rural and urban population concentrations. Suburban communities appeared to receive fewer. While over 71% of the projects served communities of 50,000 and above $\mathbf{~} 45.6 \%$ of the projects served populations over 100,000).
3. Most targeted populations were "regular" students, with those classified as disadvantaged being well represented. There were a surprisingly large number of projects serving handicapped students. With the recent State court rulings concerning handicapped students and education, this becomes very meaningful.
4. Secondary students were the populations most served; with post-high school programs being the next largest area served. Programs for lower grade students were few (11).

Director's Background

All but one of the directors were college graduates, with many more yeais of teaching experience than supervision/administration or non-educational experience.

Elements of the Projects

The major efforts of the projects, in order of the largest part of the whole, are; research, curriculum development, training students, and training teachers. Curriculum development was the element most often found in projects. Sixty of the projects were involved to some degree in training.

Objectives Met

1. Program-type objectives were the most noted prime objectives. With the majority of projects dealing with more than one objective. Most directors felt that their projects were quite effective, although not totally effective.
2. Few unexpected outcomes were identified by the directors, those noted appeared to be quite positive.
3. Teachers and materials were major contributors to meeting the goals of the projects; however, project directors felt that administration and teachers hindered them.

Impact on Educational Practices

Directors felt that their projects had some positive impact on educational practices at all geographic levels of education. They appear to be most effective at the county, state, and national levels. Curriculum and instructional procedures were the areas that they felt they had the most influence.

Sources of Influence on Decision Making

Directors felt that they themselves were the strongest source of internal influence, followed by students and teachers. State governmental policies and community were the strongest sources of external influence. They also felt that generally internal influence was stronger than external - both being on the positive side of neutral.

Becoming Perxnanent Parts of Educational Programs

Results of the projects appeared to become permanent parts of school oulldings or school districts - but not at any other level. These results are in keeping with the limited ripple effect of the R.C.U. funded projects found elsewhere in this study.

Satisfaction Generated by The Project

School systems, participants (other than trainees), and trainees were most satisfied by the projects. Those further away from the projects were less satisfied. R.C. U. satisfaction was the lowest of the group, but it was still on the positive side of satisfaction.

Attitude Changes

There was little positive change in participants towards the stimuli (concepts) provided. The strongest positive change in them was towards the participants themselves. Purpose or thrust and Vocational Education in general were the next highest areas for change. Attitudes towards others appeared to be changed negatively.

Monies Allocated and Adequacy

1. The average total cost reported for the projects was $\$ 79,909$, while the average R.C. U. funding was $\$ 44,568$. The total amounts used (where reported) was $\$ 6,073,132$; the total R.C.U. funding (where reported) was $\$ 3,342,609$. It
was apparent the R.C. U. funding was a major source. School budgets were the primary source for non-R.C.U. funding.
2. R.C.U. funding was considered almost adequate.

Additional Monies

If additional monies were available, the directors would have spent it on materials and program (curriculum).

Per Unit Costs

1. Totally it cost $\$ 1,806$ on the average to train a student, produce a curriculum material, etc. When considering the average per projects, the cost was reduced to $\$ 948.74$.
2. Only 51 were able to give a figure response.

Assistance Received During Projects

1. The R.C.U. and Vocational Education Bureau of the State Department of Education appeared to give assistance to directors. It is also important to note, that directors also requested the assistance.
2. Directors did not request much assistance from R.C. U., but did receive valuable assistance when requested. They received more assistance from R.C.U. than would be expected, given the amount requested.
3. They tended to receive little assistance from school district personnel, although they did request it.
4. They also received slight assistance from teacher education institutions.

R.C.U. Interaction

Project directors would like to see R. C. U. 's role increased after initial funding. This is in keeping with their needs for greater communications, feedback, and assistance.

General Responses

Most were happy with the design of their projects, thought their agency appropriate, remained active with other projects, but few were promoted or received other advancements.

These councils were little used; but when used, they proved to be effective.

Project Evaluaiions

Less than 50% of the directors indicated that an internal evaluation had been made on their projects, and only 25% indicated an external evaluation.

Training Programs

1. Of those reporting the information they totally spent $\$ 3,035,868$ for an average of $\$ 67,463$; they spent $\$ 2,419,830$ of R.C. U. funds for an average of $\$ 53,774$ (this was 72.3% of all monies, as indicated by respondents, spent by R.C.U.).
2. When per unit costs for training was specified, the average cost was $\$ 508.65$ per trainee, while the average per unit costs for training and other activities was $\$ 821.99$.
3. Programs trained more students than teachers or adults - with the majority of trainees being white.
4. Blacks (7.5\%) make the next largest group of trainees, Orientals (6.6\%), American Indians (0.4%), and last, Puerto Rican (0.0%).

On-Site Visitations

1. Project directors were able to establish that their projects did, indeed, have impact.
2. The ripple effect on the project-in different areas was not established or demonstrated to interviewers.
3. Most would have continued their project if given the opportunity.
4. Additional funding, feedback on a regular basis, and more on-site visits should be provided the State Department of Education and R.C.U.
5. Of those who responded, about 50% indicated that their local boards would use their own operating budgets to continue the projects.

Comparisons

1. Little difference existed on the factors studied among the one year, two year, and three year projects.
2. Types of prime and unexpected objectives did not generate different ratirg patterns (in terms of meeting them) among the directors. Those who requested assistance perceived the assistance received higher than those who didn't request assistance but got it.
3. Table 55 is a matrix of the heaviest discriminant coefficients found when maximizing differences among groups on the variables. There were differences among: rural, suburban, and urban groups; sizes of communities; types of programs; degrees of total funding; degree of R.C.U. funding; ethnic identification of students trained; and teachers trained-students trained. The variables that appear to be separating the groups are: meeting prime objectives, unexpected outcomes; factors hindering success; influencing educational practices at the national level; internal influence on decision making; satisfaction generated by the program; changes in attitude; adequacy of R.C.U. funding; amount of assistance; and effectiveness of Vocational Education Advisory Councils. They had different effects on different groups. Approximately half the variables used had some effect on separating groups - thus they had different effects on the groups.
4. It appears that projects serving larger/communities were different from other groups. Work study, equipment and curriculum type projects were also quite different. Extreme funded projects were also different from each other. Training programs were quite different from each other, and were affected by more variables than any other grouping.

Relationships

1. There were many variables that could be predicted within different subgroups studied (refer to Table 69 found in this chapter). Again the larger groups (total groups, over 100,000, urban) tended to be more sensitive to factors than those serving smaller areas or communities. The factors studied in training programs for students were not, affected by the variables, this was not true for teacher training programs.
2. Attitude changes could be predicted more often than influencing educational practices at different levels, which in turn was predicted more than satisfaction generated by the project in various areas.
3. As before, the lack of the ripple effect is demonstrated by the fact that the further away from the project one gets, the harder it is to effect change. Satisfaction generated in trainees and participants could be predicted more often than in personnel further from the project. Influencing educational practices at the building level and local level is easier to predict than at the staie or national level.
4. In descending rank order of influence we find: 1. Adequacy of R.C.U. funding; 2. \bar{X} External influence; 3 , \bar{X} Internal influence; 4 . \bar{X} Assistance received; 5. R.C. V. funding; 6. Per unit cost; 7.5 Effectiveness of Vocational Education Advisory Cuuncils; 7.5 Length of projects. It is also interesting to note that R.C.U. funded variables have greater influence on changing attitudes, while internal and external influence had greater effect on influencing educational practices, satisfaction generated, and goals reached. Interestingly, suburban programs appeared to be affected more by Vocational Education Advisory Councils than any other group.

TABLE 69
MATRIX LISTING OF DEPENDENT VARIABLES PREDICTED, SEPARATED BY THE GROUPING OF PROJECTS - PERCENT OF TOTAL VARIANCE ACCOUNTED FOR INDICATED

Groups

Dependent Variables	Total Grouf	$\begin{aligned} & \text { Loss } \\ & \text { Then } \\ & 26,000 \end{aligned}$	$\begin{gathered} 25- \\ 50,000 \end{gathered}$	$\begin{gathered} 50- \\ 100,000 \end{gathered}$	$\begin{aligned} & \text { Ovor } \\ & 100,000 \end{aligned}$	Urban	Suburban	Rural	Teachers/ other Profor. sionala	Students	Total
\bar{X} of Prime Objectives	24.19	92.60	-	-	45.05	-	-	-	-	-	3
\bar{X} of Unexpected Outcomes	-	-	-	-	-	-	-	-	-	-	0
```Influence Educational Practices in: Building or Neighborhood 36.64 93.58 - ```											
Local Community and/or District	38.36	-	-	-	-	72.54	73.23	82.10	-	-	4
Countyl Intermediate											
Unit	23.83	-	-	-	42.52	-	72.46	57.51	74.16	-	5
State		-	-	-		-	-	-	77.43	-	1
National	19.60	-	-	-	45.83	-	-	-	-	-	2
Generated in:											
Trainee	17.19	96.52	-	-	39.99	50.48	-	-	-	-	4
Participants (other than Trainees)	-	-	93.28	-	43.22	48.43	-	-	-	-	3
School Building											
Personnel	21.53	-	-	-	40.09	-	-	-	-	-	2
School System	27.53	-	-	-	47.74	-	-	-	-	-	2
County System/ Intermediate											
Unit	-	-	97.32	-	40.73	-	-	-	-	-	2
R.C.U.	19.99	-	-	-	56.83	-	-	-	-	-	2
State Dept. of Ed. fother than	.-.										
R.C.U.)	15.92	-	-	-	45.03	-	-	-	-	-	2
Changes in Attitude Towards:											
Purpose of Thrust	28.56	-	-	71.49	62.09	65.92	-	-	-	-	4
Voc. Ed. in	34.79	-	94.78	-	54.37	83.73	-	66.71	-	-	5
Education in					54.37	83.7		66.71	-	-	5
General	32.30	-	-	61.20	70.35	83.69	-	-	-	-	4
The World of											
Work	31.80	99.37	-	-	49.77	90.02	-	-	-	-	4
Themselves	27.63	99.02	-	-	53.88	69.67	-	-	-	-	4
Others (Peers)	33.11	97.07	-	-	57.21	75.36	-	-	-	--	4
Others (Non-Peers)	27.01	97.07	-	-	57.16	74.09	-	-	-	-	4
Ultimate Effects on Targeted Population	29.06	-	99.11	-	66.72	47.56	76.89	-	-	-	5
Totals By Groups	18	7	4	2	19	12	4	4	3	0	73

## CONCLUSIONS/RECOMMENDATIONS

1.. The index descriptors presently used in the P.A.R.M.S. tend to mask the real thrust of the programs. It is suggested that the authors of the P. A. R. M. S. not only list the projects by vocational area (as is presently done), but that they also list them by the major type of program for easier identification. The index descriptors may then be a separate heading.
2. Interdepartmental ties can be strengthened through more formal contact with departments. The various departments felt that more solicited proposals should be sought, thus inferring a research and program leadership role being increased for R. C. U. and the various State Vocational Education Departments.
3. R.C.U. did not appear to show favoritism in its funding - with most projects found in institutions below the college level. However, smaller size communities were under represented in the funding. This could be a function of the nature of population distributions in the State, a function of school district boundaries, or the fact that smaller schools did not submit proposals. Regardless $_{2}$ it would seem appropriate that smaller size communities be better represented. This might mean direct solicitation by R.C.U. from such schools or school districts.
4. With the introduction of Career Education in the schools, it would appear that projects serving lower grade students ( $1-8$ ) should be solicited or encouraged. This could be a thrust or goal for R. C. U.
5. The make up of all the projects appear to be quite evenly divided among research, curriculum and training. Materials, equipment, and work study did not make up large portions of the efforts of the projects. Thus, student oriented efforts appeared to be the thrust of the projects.
6. The projects were multi-objective in nature, with most prime objectives being met. It could be concluded from the data that not all objectives were met. Whether any project can do this is difficult to state, however, the directors appeared to feel that of the prime objectives they listed, most were to a great extent satisfied by the projects. Projects tended to generate few, but positive, unexpected outcomes. Generally it would appear that the projects achieved the objectives stated in the original proposals.
7. Teachers/staff play a major role in the success or failure of programs. Therefore, directors must utilize their staff effectively if they wish to meet the projects' goals.
8. Educational practices at building and local levels appeared to be affected by the projects. The ripple effect beyond the immediate geographic localities was not apparent. Thus, effective educational practices appear to be quite limited. The need to communicate successes of projects to other communities and beyond appears to be needed. This function might be assumed by R.C.U. The establishment of better communications between project lirectors, school districts, state, and national groups might facilitate this. Final reports,
although heavily used to disseminate information, evidently are not very effective as change agents. R.C.U. could play a major role in this area as a disseminator of information and consequently help to be a stronger change agent.
9. Aside from the project directors' own values and concerns, he/she must consider the influences generated by professional staff, students, the community, and state governmental policies on his or her decision making. Thus, the director is not alone when making decisions, and these sources of influence should be considered in projects to facilitate the use of their input and effect.
10. Those most closely related to projects appear to be most satisfied by the projects. The low ratings on R.C. U. satisfaction might be generated by a lack of feedback from R.C. U. on what the projects accomplished. This might be caused by a lack of manpower to do this on the part of R.C.U. Many in the interviews indicated that they would like this information from the agency.

It is recommended that post evaluation of projects, and subsequently informing project directors of the results, become a function of R.C.U.
11. The projects had little effect on changing attitudes of participants. Where attitudes were changed, they tended to be towards the participants themselves, the purpose of the project, or vocational education. There were negative changes too. If projects (or education in general) are to be considered effective, there should be considerable positive attitudes towards other factors besides the individual himself. Improved self-images are significant and should be stressed by projects, but interpersonal relations are also significant. Projects should be designed to improve interpersonal as well as intrapersonal relations. Given the slight positive attitude changes, projects should also be designed to stress more changes in attitudes.
12. R.C. U. was a major source for funding of projects; school budgets were the major source for non-R.C. U. funding. Thus the interrelationship of R.C.U. and school budgets is apparent. Consideration of this fact by directors and R.C. U. must be built into the total budget of projects - for many of these projects owe their existence to both sources.
13. Accounting does not appear to be a major area of competency for project directors, just over half were able to give per unit costs. In some cases the costs were "rough" estimates. The per unit costs appears to be the weakest data supplied by directors in this study. It would seem the project directors should be more aware of Management By Objectives, P. P. B.S., or other systems for accounting purposes. With the large amounts of monies they spent, this information should help for accountability purposes. R.C.U. should require an accounting system to be built into each project. Leadership in developing such accounting systems within projects should come from R.C.U.
14. Directors appeared to look towards R.C.U. and the State Vocational Education Bureau for assistance during their project. They also received some assistance from them. Little assistance came from other areas.

Making R.C.U. a major source of assistance, might help to facilitate R.C.U.'s role in working with project directors. Directors indicated that they desire more interaction with R.C. U. during funding, thus R.C. U. has a willing group to work with.
15. Project directors were pleased with the project design and would do little to change it. They also received little material rewards for their efforts.
16. Vocational Education Advisory Councils were little used, but proved to be effective when used. Given the effectiveness of Advisory Councils, their subsequent influence on outcomes, and sources of external influences on decision making, these Councils should be better developed, expanded, and above all used by project directors. If these Councils are not used by the directors, then proposals should be structured to guarantee their use. It is suggested that R.C. U. play a leadership role in helping project directors utilize the Vocational Education Advisory Councils in meeting the goals of projects.
17. Formal evaluations of the projects appear to be lacking - less than $50 \%$ had any type of evaluation (internal or external), and only 25 had an external evaluation. This lack of evaluation might be adding to the lack of dissemination of results, because many projects can not provide data (in form of evaluations) that looks at the quality of the project. Project directors would also be hard put to provide data on results without some type of evaluation.

Here R.C. U. could be providing a service by either requiring a formal evaluation, or as will be suggested in the following chapter, a formal post-project evaluation.
18. Since "other" category is a rather meaningless classification in terms of ethnic identification, the numbers were excluded from calculations. When this was done, the inbalance between whites and all minorities becomes very great when looking at the nature of trainees. Puerto Ricans are almost non-existent in this study.

It can be safely stated that minorities are not well represented in the training programs of this study. The one major minority group not represented is the Puerto Rican. Attempts should be made to solicit training programs that will give a better ethnic balance of those being trained - particularly Puerto Ricans.

Even when the "other" category is considered in the calculations, the inbalance between whites and specified minorities is still considerable. Many of the minorities may be hidden in the "other" categories. Given the ethnic identification situation today, project directors should be aware of such information and not combine specified minorities in the "other" category. The participation of all minorities in training programs should be expanded and encouraged. Solicited programs might be one approach that R.C.U. may use to correct this inbalance.
19. Projects are unique to each other, but the length of the projects doesn't appear to be a factor in such uniqueness. Thus projects should be evaluated on other factors besides length.
20. Nut surprising is the fact that directors who requested assistance rated such assistance higher than those who received assistance but did not ask for it. To be of more effective assistance, request for such assistance should originate with the directors, and not an outside party.
21. Looking at programs in terms of just the length of the projects would not appear to be beneficial. There were little total differences among one year, two year, and three year projects, although the length of projects did influence specific outcomes and specific groups.
22. There are differences among groups other than that generated by the length of projects, and such differences are generated by many factors. Not all factors operate on ail groups, nor do they affect them in the same way. Training programs were the most sensitive to the variables.

Directors of projects and funding agencies must be aware of these differences and not treat all proposals alike. They must be able to isolate those factors that make differences and treat them accordingly. Further research is needed in this area to establish why these differences exist and how to handle them. Evaluations of the effectiveness of proposals must also take into account the fact that differences occur among projects, and that such differences must be built into any evaluative instruments or procedures to be used.
23. Again large projects are more sensitive to factors than are smaller projects, and that training programs for students were not sensitive. R. C. U. type variables had a strong influence on attitude outcomes, while internal and external factors appeared to affect educational practices, satisfaction, and goals.

Although it would be dubious to establish a cause-effect relationship, it does appear that attitudes were positively affected by the degree (as perceived in adequacy) of R.C.U. funding. This might mean that if one were to increase the R.C.U. funding, one might be able to increase (to some extent) positive attitudes towards the variables studied.

It also appears that the amount of internal and external influence will affect goals, satisfaction, and educational practices. Thus if programs were designed to increase either internal or external (which ever is appropriate) influences, the degree of satisfaction generated by the project, the ripple effect by influencing educational practices, or meeting goals would be enhanced.

The other factors discussed have an effect on the variables studied, thus like a chemist, the project director must be able to balance and mix the appropriate amount of effects to increase the ultimate goals of the project. It does appear that he can increase his effectiveness as a director, consequently increase the probability of meeting the project's goals, if he identifies and understands such relationships.
\# \# \#

In summation, the R.C. U. funded projects have had significant impact on vocational education. The R.C.U. staff is well received at all levels. Given the funding tasks, the budget constraints, and the educational needs, the R.C.U.
funding programs have had noteworthy effect on education. Changes have been suggested that should increase R.C. U.'s effectiveness.

The data points to a need for greater R.C. U. input at all levels; certainly R.C.U. funding has made a unique contribution to vocational education. This study has pointed out a need for more interaction between R.C. U. and many levels of the educational community. R.C.U. should also be involved at various levels of project development, implementation, guidance. review, and evaluation. In order to do this, the systematic approach must be developed to implement many of the suggestions made in this report. The following and final chapter includes a model for monitoring R.C.U. funded projects. Its sole purpose is to facilitate R.C.U.'s mission, and hopefully to maximize and/or minimize those relationships and factors found in this study.

## CHAP'TER 8

## MODEL FOR MONITORING R.C.U. FUNDED PROJECTS

The results of this study indicated a need for greater and more effective control of funded projects in a systematic manner by R.C.U.

The following few pages are a description of a possible model (refer to Figure I) that could be used by R.C. U. in monitoring its funded projects. The model should be viewed as a whole, but at the same time, as two sub-models operating simultaneously. The sub-model blocks for grantee functions is illustrated with screen in the background. The sub-model blocks for R.C.U. functions does not have the screen background. Together both models flow through and at times parallel the same points. Totally they can be considered a model, since they interact with, and are not independent of each other; they also work simultaneously.

First, R.C.U. must continue to establish priorities. These priorities might be established in concert with others, originate at higher levels, (State, Federal Government), a product of research, community demands, needs as seen by R.C. U. staff, etc. Regardless of their origins, the priorities must be established in order to guarantee the logic of the dispersion of funds. R.C. U. should continue to make these priorities known to the various interested publics.

Next a grantee submits a proposal. This proposal might have been solicited, or it might have been unsolicited. Regardless, the proposal is submitted according to proper submission procedures established by R.C.U.
R.C.U. staff then evaluates the proposal in terms of the priorities and the stated goals of the proposal. A cost, analy sis is conducted by R.C.U. to determine the cost efficiency and cost effectiveness of the proposed research or project. This is done, even if the proposal does include cost efficiency data of its own.

A decision concerning the status of funding is made. If a negative decision is reached, the reasons for not funding the proposal is returned with the original proposal. If the decision is positive, then the grantee is informed that a preliminary affirmative decision has been made, pending an on-site visitation by R.C.U. staff personnel to review procedures to be used by the grantee as well as the facilities available to perform the project. If all is in accordance with R.C.U. priorities, cost efficiency and effectiveness, then the project may begin as submitted. If there is a need for alterations of the proposal, but there are no major revisions, the grantee may wish to amend the proposal accordingly and await final decision (refer to the feedback loop). If there are major revisions, the grantee may wish to revise and resubmit as if it were a new proposal. The proposal may also be rejected outright.

During the life of the project, R. C. U. will be in constant contact with the grantee in order to give advice, information and support. There are very formal definite procedures that must be followed during the life of the project. The grantee will be requested to prepare and submit quarterly status and evaluation reports. These reports are to be submitted directly to R.C.U.
R.C.U. conducts quarterly on-site visitations to assess the progress of the project in its environment. The grantee-submitted quarterly reports are also reviewed by the R.C.U. staff. After the information from the on-site visitations and the review of the quarterly report are considered, a decision as to whether to continue the project is made. If the project is terminated (for which R.C. U. must show cause, and the grantee may appeal), all unused funds are collected, a review is conducted, and a report is prepared. A project may be continued without any revisions, or recommendations for changes in procedure, design, or thrust may be made. [The grantee may accept the changes or jointly decide on changes needed.] R.C.U. then reviews changes made based on recommendations, and then feeds back in the loop to quarterly reports - thus establishing a mure accurate base for which a decision may be made on whether to continue the project.

The quarterly review loop is not made in a vacuum, R.C. U. is in constant contact with the grantee for information, input, and reactions. While the review is in process, the program is continuing. The program can only stop when R.C.U. makes the decision to terminate it - with stated justifications. The review procedure is formally performed after each quarterly report.

If there are no revisions, or acceptable revisions are made, the project continues until completion. The project ends and a final report to R.C. U. is made by the grantee. The grantee's formal functions thus end. The final report is then analyzed by R.C.U. staff and/or consultants in terms of: meeting program objectives; R.C.U. stated priorities; cost efficiency; and cost effectiveness.
R.C. U. then performs a post program evaluation. Depending on the nature of the project, R.C.U. staff may perform on-site visitations, interview the project director, interview staff, interview trainees, include visitations and surveying the needs of industry, commerce, and the community(ies) served by the project, or test and research materials developed.

The post program evaluation thus results in a final overall analysis of all the data collected on the projest from its very beginning. This is part of an evaluation for R.C.U. From this data should follow recommendations for future projects as well as possible additions, omissions, or revisions of R.C.U.'s own priorities.

This proposed model will enable R.C.U. to monitor and evaluate R.C.U. funded projects. However, the implementation of this model would entail an increase in the present R.C.U. staff and an increase in the support capabilities of the present R.C.U. operation. In the long run, a system that is flexible and allows for changes, that is constantiy apprized of its present situa.tion, that gives constant support to the grantee when needed, that demands continued fiscal and educational responsibility and accountability of the grantee, and that demands continual fiscal and educational responsibility and accountability of itself, must, by its very nature, put demands on all of its elements, and in turn it will increase the efficiency and effectiveness of the Research Coordinating Unit to meet its goals and missions.


## APPENDIX A

Dear Respondent:

The American Management Center has been funded by the Research Coordinating Unit, of the Department of Education, to assess the impact of RCU funded projects on educational practices in Pennsylvania. The enclosed questionnaire - opinionnaire has been developed as one part of the project.

As an individual involved in a funded project, you can provide us with important information that will help to determine the degree of impact RCU funding in general, has had in vocational education areas. We are interested in identifying the strong and weak areas in the RCU funded program, so please answer with complete candor. All information will be held in strictest confidence, with general trends and results appearing in a culminating report written by the American Management Center.

We are aware that the instrument appears to be quite lengthy, but most of the questions require checking - type responses; the total instrument should not take too much of your time. Thank you very much for contributing to this important research effort.

Sincerely yours,

COMMONWEALTH OF PENNSYLVANIA
DEPARTMENT OF EDUCATION
BoX 911, HARFISEURG. PA. 17126

## Dear Vocational-Education Researcher:

The Research Coordinating Unit and The Bureau of VocationalTechnical and Continuing Education are having a study conducted of past vocational education research efforts to determine the impact of this research and related activities on vocational programs in Pennsylvania. The American Management Center (AMC) in Philadelphia has been selected as the outside agency to conduct this study.

In the very near future, AMC will be contacting former vocational education research project directors that have conducted projects since 1966. The work of AMC will be greatly facili:ated and in turn, bureau services may be improved if AMC receives your fullest cooperatior: with this study.

Thanks in advance for your full cooperation.

$i$

# IMPACT ASSESSMENT OF RCU FUNDED PROJECTS 

## Survey Form

American Management Center

Please fill out this form and return by May 12th in the self-addressed envelope provided. In order to make this study meaningful and to give us needed information, we will need your cooperation in providing complete and objective responses. All information will be treated confidentially and anonymously. We are concerned with surveying all the programs and not focusing on a particular project.

This survey instrument is divided into two sets of questions. Questions 1-26 cover information for all projects; Questions 27-30 deal specifically with training (students/ adults/teachers/other professionals). We ask that everybody respond to questions 1-26, and in addition those involved in training programs respond to questions 27-30.

We are aware of the imposition we are placing upon your busy schedule, that is why the instrument was designed with a minimum of open-ended responses.

Thank you for the time and effort that you will expend in responding.

American Management Center

Date filled out $\qquad$ RCU Project Number $\qquad$

1. Please check the appropriate classification of the group or agency operating the project.
a. Local public school system
b. Area Vocational-Technical School
c. University/College
d. Non-Profit private organization
e. Other (please explain)
2. Check the appropriate area(s) that your project served or serviced.
A. Population Concentration
3. Rural (Non-Appalachia)
4. Rural (Appalachia)
5. Suburban
6. Urban
B. Population of the Geographic community served:
7. over 100,000
8. $50,000-100,000$
9. $25,000-49,999$
10. $10,000-24,999$
11. Under 10,000

## C. Targeted Population(s) of the Project

1. Regular
——
2. Disadvantaged
D. Education Levels
3. Pre-School
4. K-3 grades
5. 4-6 grades
6. 7-8 grades
7. 9-12 grades (comprehensive)
8. Special Education
9. Area Voc-Tech School 9-12
10. Post-High School (Non-College)
11. Community/Jr. College (A.A., Transfer, Terminal)
12. College/University (4 year institutes)
13. Graduate School
14. In-Service Training (Non-College Credit)
15. The Project Prime Administratcr's Background
A. Educational Level (check highest level reached)

Non-Degree_B.S./B. A.__M.S./M.A./M.E $\qquad$ Ed. D/Ph.D $\qquad$
B. Number of years: Teaching_ Supervision/Administration
C. Non-Educational Experience (business/industry, on-the-job training) Number of years $\qquad$
4. If you were to divide your total project into its elements, illustrate below, within the grid, the percentage of the total project that was devoted to:

Curriculum development - scope and sequence/guidance
Use These Symbols
(SS)
Research
Developing Materials
Training - Teachers/other professionals
Training - students/adults
(TS)
Equipment - purchase and/or upgrading
Work study


5. List the prime objectives of the project (as indicated in the proposal for the project), and indicate to what extent they were met. Use the following rating scale:
Not at all - 1; Very little - $\underline{2}$; Somewhat - $\underline{\text {; Considerably - }}$; Objective was totally met $-\underline{5}$.
A. Primary Objectives
1.
2. $\qquad$
3. $\qquad$
4.
5.
6.
Rating
6. List unexpected outcomes - indicate with a check if they were positive or negative.

Unexpected Outcomes
$\qquad$
7. A. What major factors (or elements) contributed most to the success of your project? List them with the most significant first, the second most, then the third, and so on...
(Most Significant)
$\qquad$

## (Least Significant)

B. What major factors (or elements) hindered you most in meeting the project's objectives: List them with the most significant first, the second most, then the third, and so on...
(Most Significant)
$\qquad$
(Least Significant)
8. Rate how successfully your project was able to influence educational practices at the following levels. Use the following ratings:

Extreme Negative Influence	Very Negative Influence	Had Some Negative Influence	$\begin{gathered} \text { No } \\ \text { Influence } \end{gathered}$	Had Some Positive Influence	Very Positive Influence	Extreme Positive Influence
$\underline{1}$	$\underline{2}$	$\underline{3}$	$\underline{4}$	$\underline{5}$	$\underline{6}$	7
Levels:			Rating			
a. Building or neighborhood						
b. Local community and/or district						
c. County/Intermediate Unit						
d. State						
e. National						

9. Which of the following can be identified as specific examples of how you could determine your project's influence? Indicate by placing a check in the appropriate column(s) where the influence was felt.

Level Where The Influence Was Felt

10. To what extent did the following influence your decision making while director of the project? Please insert appropriate rating in space provided:

Ratings: Extreme negative influence - 1 ; Very negative influence - $\underline{2}$; Had some negative influence - $\underline{\text {; }}$, No influence - 4; Had some positive influence - $\underline{\text {; Very positive }}$ influence- $\underline{6}$; Extreme positive influence - $\underline{7}$.
A. Sources of Internal Influence

1. Professional staff/ faculty
2. Students
3. Sect'y
4. Unions
5. School Board or University policies
6. Restriction of the proposal
7. Your immediate supervisor
8. Yourself
B. Sources of External Influence
9. Parents
10. Unions
11. Community
12. Local governmental policies
13. State governmental policies
14. U. S. governmental policies
15. Political parties
16. Pressure groups
17. How did you disseminate the results of this project? Check the appropriate one(s)
a. Final report
b. In-service training (after the project)
c. Publications (books)
d. Publications (articles)
e. Speeches and papers given at conferences
f. Speeches to local groups
g. Word-of-mouth
h. Others (explain)
18. Did the results, or product, become a permanent part of the program/policy for:

a.	School building	Yes	No
b.	School district	Yes	No
c.	County $/$ Intermediate	Yes	No
d.	State	Nes	No
e.	National	Yes	No
f.	University/college	Yes	No
		No	

13. As director, what are your feelings about the satisfaction generated by the project for; (Please insert appropriate rating in space provided)
Ratings: No Satisfaction-1; Little Satisfaction - 2; Satisfied - ${ }^{\text {; }}$; Very Satisfied - - ; $^{\text {; }}$
Highly Satisfied - $\underline{\text {; }}$; Not Applicable - $\underline{6}$.
a. Trainees
b. Participants other than trainees (e.g., staff)
c. School building personnel
d. School system
e. County system/Intermediate Unit
f. RCU
g. State Department of Education (other than RCU)
14. Rate the changes in attitudes of those who partipated in your project. (Please insert appropriate rating in space provided.

Ratings:Considerable   Negative   Change-1	Some   Negative   Change-2	No	Some   Cositive	Considerable   Positive

a. Purpose or thrust of the project
b. Voc. Ed in general
c. Education in General
d. The world of work
e. Themselves
f. Others (peers)
g. Others (non-peers)
15. Rate the project's outcomes in terms of its ultimate effect on students or targeted population. (Please encircle proper rating)

No effect. Little effect. Some effect. Considerable effect. It had a major effect. $\underline{1}$
$\underline{2}$
$\underline{3} \quad \underline{4}$ 5
16. A. Total cost of operating the project $\$$ $\qquad$
B. RCU Funding $\$$
C. Rate the adequacy of the RCU Funding by encircling the appropriate description:
Extremely adequate. Very adequate. Somewhat adequate.
$\underline{4}$ $\underline{3}$
Not very adequate.
Not adequate at all.
$\underline{2}$
1
D. If more money had been allocated, what would you have done with it that you were not able to do with the funding received?
17. In addition to RCU funding, what other sources of funding were used to support the project? Please check the appropriate source(s).
A. None
B. School budget
C. Local government
D. State - other than RCU
(List)
E. Private industry - (List) $\qquad$
F. U. S. Office of Education
G. Office of Economic Opportunity
H. Other U. S. funding (indicate)
I. Foundation: please name $\qquad$
18. Estimate the per unit cost for your project. That is - how much did it cost to train/ educate an individual, or produce a curriculum material, or complete a study, etc., etc.
$\underline{\text { List Unit } \quad \underline{\text { Per Unit Cost }}}$
$\qquad$
19. How much influence did the following have on creating the proposal? Please insert appropriate rating in space provided:

Ratings: Had no influence - 1; Had very little influence - 2; Had some influence- $\underline{3}$; Very influential - 4; Extremely influential - $\underline{5}$.
A. RCU
B. State Dept. of Ed. (Non-Voc. Ed. Div.)
C. State.Dept. of Ed. (Voc. Ed. Div.)
D. County level Voc. Ed. personnel
E. Local Voc. Ed. personnel
F. School building personnel
G. School district personnel
H. Teacher education institution
20. How much assistance did you receive, or have, during your project from: (Please insert appropriate rating in space provided)

No assistance - $\underline{1}$; Slight assistance - $\underline{2}$; Some assistance - $\underline{3}$; Considerable assistance $-\underline{4}$.
Did you request assistance?
a. RCU
b. State Dept. of Ed. (Voc. Ed.)
c. State Dept. of Ed. (Non-Voc. Ed.)
d. County Educational Personnel
e. District Personnel
f. School building personnel
g. Teacher Educational Institutions

21. Do you believe there should be: (check only one)
a. No interaction between RCU and the project after funding has been approved.
b. There should only be slight interaction between RCU and the project after funding has been approved.
c. There should be some interaction between RCU and the project after funding has been approved.
d. There should be considerable interaction between RCU and the project after funding has been approved.
e. There should be constant interaction between RCU and the project after funding has been approved. $\qquad$
22. Should your project, as designed, be repeated?
a. Yes (go to b. and c.) No $\qquad$ (go to b. and d.)
b. Why?
c. What would you do differently, if the project, as now designed, were to be repeated?
d. Would you repeat the project, if you were to significantly redesign it? Yes $\qquad$ No $\qquad$ - If yes, how and in what way would you change it?

If no, why?
23. Now that you have completed the project, do you feel that your agency (or institution) was the most appropriate one for this project?
a. Yes $\qquad$ b. No $\qquad$ , if not, which one of the following would be best suited?

1. Local school system
2. Area Voc-Tech. School
3. State department
4. University/college
5. Private industry
6. Local governmental agency
7. Other $\qquad$
8. As a result of this project, what happened to you - in terms of career advancement? Please check the appropriate response(s).
a. Nothing
b. Received an advanced degree
c. Was promoted
d. Received certification
e. Given other projects to develop
f. Given administrative duties or position not held before the project (but not promoted)
g. Other (please describe)
9. a. To what extent did you use a local Voc. Ed Advisory Council for this project? Encircle the appropriate rating.

None of the time. Very little. At times. A good bit of the time. $1 \quad 2 \quad 3$
$\underline{4}$
A considerable amount of the time.
b. If you used them at all, rate their effectiveness - in terms of your project only.

Was not effective at all. Had very little effect. Had some effect.
Considerable effect. Highly effective. $\underline{4}$ 5
26. a. Has the program had an internal evaluation?

1. Yes $\qquad$ (go to 2 and 3) No
2. Is a report available Yes
$\qquad$ No
3. Who, or what unit within your organiz $\overline{a t i o n}$, was responsible for designing and conducting the evaluation?
b. Were there any external evaluations done on your project?

Yes _ No _If so, by whom?
(Title and address)
Check here if a report is available

IF YOUR PROJECT WAS DIRECTL̇Y INVOLVED IN TRAINING/EDUCATING STUDENTS, ADULTS (NON-PROFESSIONAL), OR TEACHERS/OTHER PROFESSIONALS (e.g., INSERVICE, WORKSHOPS, TEACHER TRAINING, ETC.) PLEASE RESPOND TO QUESTIONS 27-30.
(IF NOT DIRECTLY INVOLVED IN TRAINING, THANK YOU FOR YOUR TIME AND EFFORT AND PLEASE RETURN THE INSTRUMENT IMMEDIATELY IN THE ENVELOPE PROVIDED.)
27. If the project was directly involved in training/educating, please give the numbers involved under the appropriate categories ( $\mathrm{A}, \mathrm{B}, \mathrm{C}$ ).
A. Students (Up to 18 years of age)
B. Adults*
(Over 18 years)
C. Teachers/other Professional Staff (Workshops, teacher training, in-service etc.)

Number of Participants:

Total
American Indians
Blacks
Puerto Ricans
Whites
Orientals
Others (explain)


* Do not include teachers or other professionals in section B. Professionals who participated in teacher training programs, workshops, in-service programs, etc., should be included in section C.

28. Did the majority of the participants after leaving your program - (check the appropriate response)
a. If students or adults:
29. Remain in school, or in another program, for further training/education?
or
30. Go immediately into industry/business: $\qquad$
b. If teachers or other professionals:
31. Remain in the position or area that was the focus of your project
32. Moved immediately into a position or area not related to the focus of your projects $\qquad$
33. If the participants went immediately into industry/business, list the business or industries in your area where the largest numbers were employed.

Name of Firm Address
$\qquad$
30. If a program for teachers or other professionals, did they receive: (please check the appropriate responses)
a. An initial degree
b. An advanced degree
$\qquad$
c. An initial certificate
$\qquad$
d. College credit
e. Credit towards salary advancement
f. None of the above

THANK YOU FOR YOUR TIME AND EFFORT. PLEASE RETURN THIS INSTRUMENT IMMEDIATELY IN THE ENVELOPE PROVIDED.

APPENDIX B

123

## AMERICAN MANAGEMENT CENTER

PROJECT NO. PA.
(R.C.U.)

## TITLE:

INTERVIEWER

PERSON INTERVIEWED:
NAME $\qquad$
TITLE $\qquad$
LOCATION

## NOTES

The person interviewed may not be the same person who filled out the questionnaire.
In any event, indicate that the purpose of the site visit is to gain additional information and to give the project personnel an opportunity to make comments and share information and thoughts that may or may not be brought out by the questionnaire.

Be sure to indicate that the personal interview is not a substitute for the questionnaire or vice versa.

Assume that the person being interviewed has actually only allocated, in his schedule for that day, one to two hours that you asked for. Therefore, do not use up a lot of time with small talk, such as the weather, traffic, countryside, the buildings, his/ her office, etc. They will be waiting for and expecting you to get to the point.

Don't allow yourself to be interrupted by a phone call for you. Make sure that, if and only absolutely necessary, messages are left for you to be picked up after interview.

A friendly smile may help to set the tone instead of the small talk routine. Use a friendly and relaxed style. Do not act as an interrogator. If the person being interviewed shows the slightest indication of getting up tight from a certain question then take another route or drop it.

Opening questions are extremely important. Although you are seeking specific data the person being interviewed should feel free to talk and not feel restricted to certain responses. He should feel that you are listening to, concerned about or interested in the things he feels like talking about.

Nonetheless, within this framework, get the data you need.
Good luck and happy interviewing!

## Opening (suggested)

1. Mr./Mrs.

I have read the abstract of your program (P. A.R. M.) and I wonder if you would mind sharing with me some of your personal feelings concerning the program.
(a) Did you enjoy being involved in this project?
(b) Do you think it had any impact in (depends on type of project)
(1) Meeting the needs of students (How?)
(2) Meeting the needs of adults (How?)
(3) Professional growth of staff persons (How?)
(4) Creating new materials (How?)
(5) Developing new methods or approach (How?)
2. In what areas do you feel the program made a ripple effect on the educational system (Please explain) -
(1) Student-achievement

- Motivation
- Awareness
(2) Teacher performance (teaching)
- Attitude (ask for indicators of change)
(Cont'd. on next page)
(3) Curricular improvements

Direct

Indirect

Actual

Projected
(4) Parental involvement

Community Reaction

Community Understanding

Community Cooperation
3. Would you like to see this program
(a) Repeated
(b) Continued
(c) Expanded
(d) Revised
(e) Discontinued
(Cont'd. on next page)

IF ANSWER TO NO. 3 IS A,B,C OR ESPECIALLY D, THEN ASK:
4. What would you like to see to make the program more successful re:
(a) Students
(b) Staff
(c) Materials
(d) Curriculum
(e) System improvement
5. How could State Department of Education help in this effort
(a) Additional funds - for what purpose(s)
(b) Program guidance
(c) Professional resources
(d) More on-site visits
(e) Department of Education (State-R.C.U. and others) feedback on regular basis
6. Physical identification of objectives (if not, reasons if in objectives of the proposal)
(a) New shop layout
(b) Staff trained and performing
(c) Studen. status after program
(d) Curricular materials
(e) Report
(f) In house evaluations
(g) Other
7. Do you have any other comments that you would like to share with us?

After formal part of interview is over, close up mates 'al, etc. Before leaving, like after handshake, casually ask: WHAT WOULD BE THE REACTION OF THE LOCAL SCHOOL BOARD TOWARDS USING AN INCREASED AMOUNT OF THEIR OPERATING BUDGET FOR THIS PROJECT. (Just a measure of how program is perceived by local Board.)

Write the answer to this one later on, out of sight of interviewee.

## APPENDIX C

## MULTIPLE REGRESSION ANALYSES

Noie: Please use the appropriate key found in Table 1.
The proper key number is found directly under the group identification listing that is located under the table number.

## Content

Total Group
Size of Community Type of Community Type of Program

Tables
2-23
24-112
113-178
179-222

KEYS TO BE USED TO IDENTIFY INDEPENDENT AND DEPENDENT VA:


[^2]

TABLE 4 TOTAL GROUP KEY 1

SAMPI.E SIZE	98	COEFFICIENT OF DETERMINATION
DEPENDENT VARLABLE IS NOW NO. 4664		


inear regression					
SOURCE OF YarIatila	C.F.	SUM OF	MEAN	F	p
DUE TO REGKESSICN..............	8	$\begin{gathered} \text { SUUARES } \\ 271.53223 \end{gathered}$	STUARES $34,19153$	$\begin{aligned} & \text { VALUE } \\ & 6,4335 \end{aligned}$	<. 01
UEVIATION ABOUT REGRESSICN...	$\begin{array}{r} 89 \\ 57 \\ \hline \end{array}$	$\begin{aligned} & 472.99854 \\ & 746.53076 \\ & \hline \end{aligned}$	5.31459		


YARIAOLE	MEAN	Sto.	KEG.	STD.ERROR	COMPUTEO	PARTIAL	SUM OF So.	PRUP. VAR.
NO.		OEVIATION	COEFF.	OF REG.COE.	T Value	CORR. COE.	ADOED	CUM.
1	1.55102	C. 82640	0.00242	0.3 CS 12	0.00792	0.01084	23.41930	0.03137
9	4.95640	1.36724	-C. 14509	0.19158	-0.75734	-0.08002	15.62826	J. 022093
10	3.92406	1.66624	0.66658	0.16442	4.05417	0.39483	13.91206	0.17804
20	341C8.25351	53618.60547	0.00002	0.00000	1.94934	0.20235	24.31644	0.03257
27	2.85796	1.65280	0.18515	0.15859	1.16749	0.12282	20.89192	0.03602
20	548.74487	3313.11328	0.00006	0.00007	0.83713	0.08839	5.57724	0.00747
29	2.23267	1.60744	0 0 02971	0.27854	0.10667	0.01131	5.87507	0.00787
30 4	1.96939 4.12245	1.89657 2.77420	0.40387	0.14526	2.70589	0.27571	38.91264	0.05212

TABLE 5 TOTAL GROUP KEY 1
$\begin{array}{lll}\text { SAMPLE SIZE } & 98 & \text { COEFFICIENT OF DETERMINATION } \\ \text { DEPENDENT VARLABLE IS NOW NO. } 5 & \text { MULTIPLE CORR. COEFFICIENT } & 0.6194\end{array}$
DEPENDENT VARLABLE IS NOW NO. 5

MULTIPLE CORR. COEFFICIENT
0.6194

ANALYSIS OF VARIANCE FUR THE MULTIPLE LIAEAR REGRESSION

SOURCE OF VARIATIGA	$\begin{aligned} & \text { REGR } \\ & \text { O.F } \end{aligned}$	ON SUM OF	MEAN	F	p
OUE TȮ REGRESSICN..............	8	$\begin{aligned} & \text { SGUARES } \\ & 234.45547 \end{aligned}$	$\begin{aligned} & \text { SQUARES } \\ & 29.99443 \end{aligned}$	$\begin{aligned} & \text { VALUE } \\ & 6.9244 \end{aligned}$	<. 01
OEVIATION ABOUT REGRESSICN....	$\begin{aligned} & 89 \\ & 97 \end{aligned}$	$\begin{aligned} & 385.52417 \\ & 625.47974 \\ & \hline \end{aligned}$	4.33173		


VARIADLE	MEAN	sto.	REG.	STO.ERROR	COMPUTEO	PARTIAL	SUM OF SO.	PREP. VAR.
NO.		OEVIATICN	COEFF.	OF REG.COE.	1 Value	CJRR. COE.	AOOEO	CUM.
1	1.55102	C. 82640	0.01163	0.27547	0.04222	0.00448	19.01337	0.03040
9	4.95640	1.36724	-0.03063	0.17296	-0.17707	-5.01877	20.77205	0.0332 L
10	3.92406	1.60624	0.51432	0.14844	3.46484	0.34476	74.54187	0.11918
26	34108.25391	5361E.t0547	0.00001	0.00000	1.33293	0.13990	11.73689	0.01876
27	2.89796	1.65280	0.40380	0.14317	2.82036	0.28043	63.79105	0.10199
28	548.74487	3313.11328	-0.00010	0.00006	-1.51274	-0.15833	6.89960	0.01103
$\underline{29}$	4.23867	1. 60744	-0.14319	0.25147	-0.56941	-0.06J25	6.89960 0.99769	0.01263 0.00160
30 5	1.90939 $4.602 \mathrm{C4}$	1.89657 2.53934	0.42060	0.13475	3.12136	0.31412	42.20351	0.06747

## SAMPLE SIZE 98

DEPENDENT VARIABLE IS NOW NO. 6
COEFFICIENT OF DETERMINATION

0.2383

MULTIPLE CORR. COEFFICIENT

0.4881


TABLE 7 TOTAL GROUP KEY 1
SAMPLESI2E 98 COEFFICIENT OF DETERMINATION 0. 1440
DEPENDENT VARIABLE IS NOW NO. 7
0. 3795


TABLE 8 TOTAL GROUP KEY 1
SAMPLE SIZE 98 COEFFICIENT OF DETERMINATION 0. 1960

DEPENDENT VARIABLE IS NOW NO. 8
MULTIPLE CORR. COEFFICIENT
0.4427


TABLE 9
TOTAL GROUP
KEY 1
SAMPLE SIZE S8
DEPENDENT VAKIABLE IS NOW NO. 11
COEFFICIENT OF DETERMINATION
0.1719
MULTIPLE CORR. COEFFICIENT
0.4140

SOURCE OF VARIATION LINEAR	$\begin{aligned} & \text { REGR } \\ & \text { C.F. } \end{aligned}$	SUN Of	MEAN	$F$	p
		Souares	SOUARES	Value	
DUE TO REGRESSION..............	8	51.75041	6.46880	2.3094	$<.05$
DEVIATION A8OUT REGRESSION...	89	249.23958	2.80044		
TCTAL...	97	300.98999			


VARIABLE	PEAA	STC.	REG.	ITD.ERROR	CDMPUTEU	PARTIAL	SUM OF SU.	PRROP. VAR.
NO.		DLVIATIOId	CUEFF.	$\therefore$ AF REG.COE.	$T$ VALUE	CUFR. CUE.	AUUEÜ	Cum.
1	1.55102	C. 82640	0.16043	0.22149	0.72434	0.07655	5.71021	0.01897
9	4.95640	1.36724	0.25412	0.13907	1.82733	0.19016	20.20224	0.06712
10	$3.924 C 6$	1.66624	0.06551	0.11935	0.54884	0.05808	1.81838	0.00604
26	34108.25391	53618.60547	0.00000	0.00000	1.20614	$0.126 \mathrm{~d}^{2}$	4.33059	0.01439
27	2.89796	1.65280	-0.08703	0.11512	-0.75598	-0.07938	0.24797	0.00082
28	948.74487	3313.11328	-0.00010	0.00005	-1.84515	-0.19195	11.26383	$0.03742^{-}$
29	2.23867	1.00744	0.34126	0.20219	1.68776	0.17611	7.92456	0.02633
30	1.56939	1.89657	-0.03255	0.10835	-0.30046	-0.03183	0.25281	0.000084
11	4.01020	1.76153						O.000

TABLE 10 TOTAL GROUP KEY 1

SAMPLE SIZE	98	COEFFICIENT OF DETERMINATION
DEPENDENT VARIABLE IS NOW NO. 1392		
	12	MULTIPLE COIRR. COEFFICIENT

- ANALYSIS OF VARIANCE FOR THE MULTIPLE LIMEAR REGRESSIDN

SDURCE OF VARIATION	D.F.	SUM UF	MEAN	F	$p$		
DUE TO REGRESSION		SQUARES	SQUARES	VALUE			
DEVIATION ABOUT REGRESSI ON-	8	42.18698	5.27337	1.7996	n.s.	.	
DEVIATION ADOUT REGRESSIAN...	$\begin{aligned} & 89 \\ & 97 \\ & \hline \end{aligned}$	$302.98999$	2.93037				


YARIABLE	- MEAN	STO.	REG.	STD.ERROR	COMPUTED	fartial	SUM OF SQ.	PROP. VAR.
NO.		DEVIATION	COEFF.	OF REG.COE.	$T$ VALUE	CURK. COE.	ADDED	CUM.
1	1.55102	C. 82640	0.06175	0.22657	0.27252	0.02888	3. 15164	0.01040
9	4.95640	1.36724	0.14329	0.14226	1.00725	0.10617	14.68989	0.04848
10	3.92406	1.06624	0.20949	0.12209	1.71589	0.17895	10.94215	0.03611
26	34108.25391	53618.60547	C. 00000	0.00000	1.24617	0.13096	5.33115	0.01760
27	2.89796	1.65280	-0.02352	0.11776	-0.19970	-0.02117	D. 03676	0.00012
28	948.74487	3313.11328	-0.00006	0.00005	-1.16748	-0.12282	4.70540	0.01553
29	2.23867	1.00744	0.21758	0.20683	1.05197	0.11082	3.23345	0.01067
30 12	1.96939 4.01020	1.89657 1.76737	-0.02013	0.11083	-0.18166	-0.01925	0.09670	0.00032

TABLE 11 TOTAL GROUP KEY 1
SAMPLE SIZE $98 \quad$ COEFFICIENT OF DETERMINATION 0.2153
DE PENDENT VARIABLE IS NOW NO. 13
MULTIPLE CORR. COEFFICIENT
0.4640


TABLE 12 TOTAL GROUP KEY 1
SAMPLE SIZE 98 DE PENDENT VARIABLE IS NOW NO. 14

COEFFICIENT OF DETERMINATION
0.2753

MULTIPLE CORR. COEFFICIENT
0.5247


TABLE 13 TOTAL GROUP KEY 1
SAMPLE SIZE 98 COEFFICIENT OF DETERMINATION 0. 1055
DEPENDENT VARIABLF IS NOW NO. 15
MULTIPLE CORR. COEFFICIENT
0.3247

SOURCE OF VARIATION			$\begin{aligned} & \text { REGRESSION } \\ & \text { O.F. } \end{aligned}$	M OF	MEAN F		$p$	
DUE TO REGRESSIONe.ere........e			SQUARES   0 65. h7778		SQUARES VALUE   8.20972 1.3115		n.s.	
OEVIATION	A ABOUT REG	$\begin{aligned} & \text { RESSION... } \\ & \text { TOTAL... } \end{aligned}$	89 55   97 62	$\begin{aligned} & 13843 \\ & 81641 \end{aligned}$	6.25998			
VARIABLE	MEAN	STO.	REG.	STO.ERROR	COMPUTEO	PARTIAL	SUM OF SO.	PRUP. VAR.
NO.		OEVIATION	COEFF.	OF REG.COE.	- T VALUE	CORR. COE.	AOOEO	CUH.
1	1.55102	C. 82640	0.28877	0.33115	O. 87201	0.09204	3.64110	0.00585
${ }^{9}$	4.95640	1.36724	0.10619	0.20792	0.51074	0.05406	8.73042	0.01402
10	3.92406	1.66624	0.37896	0.17844	2.12371	0.21962	19.11116	0.03069
$\begin{aligned} & 26 \\ & 27 \end{aligned}$	$\begin{array}{r} 34108.25391 \\ 2.89796 \\ \hline \end{array}$	53618.60547 1.65280	-0.00000 -0.02301	0.00001	-0.18848	-0.01998	0.53224	0.030085
28	948.74487	3313.11328	0.00008	0.00008	0.99681	0.10508	6.79169	0.00850
29	2.23867	1.00744	-0.38974	0.30230	-1.2.8924	-0.13540	17.16301	0.02756
30	1.56939	1.89657	-0.13602	0.16199	-0.83967	-0.08865	4.41354	0.00709
15	3.69388	2.53393						-00799

TABLE 14 TOTAL GROUP KEY 1
SAMPLE SIZE 98
DE PENDENT VARIABLE IS NOW NO. 16
analysis of variance for the multiple LIAEAR REGRESSION

LIAEAR REGRESSION					
SQURCE OF VARIATION	D.F.	SUM OF	MEAN	F	p
		SQUARES	SOUARES	VALUE	
DUE TO REGRESSION.............	8	96.17815	12.02227	2.7791	$<.01$
OEVIATION ABOUT REGRESSION...	$\begin{array}{r} 89 \\ 97 \\ \hline \end{array}$	$\begin{array}{r} 385.01587 \\ 481.19409 \\ \hline \end{array}$	4.32602		


VARLABLE	MEAN	STO.	REG.	STO. ERROR	COMPUTEO	PARTIAL	SUM OF SO.	PROP, VAR.
$\begin{gathered} \text { NO. } \\ 1 \end{gathered}$	1.55102	OEVIATION C. 82640	$\begin{aligned} & \text { COEFF } \\ & 0.15818 \end{aligned}$	$\begin{gathered} \text { OF REG.COE } \\ 0.27529 \end{gathered}$	T VALUE	CORR . COE	AOOEO	CUM.
9	4.95640	1.36724	0.10132	0.17285	0.58619	0.06202	22.28285	0.04631
10	3.92406	1.66624	0.51330	0.14834	3.46026	0.34435	56.88887	0.11822
26	34108.25391	53618.60547	0.00000	0.00000	0.17165	0.01819	0.00567	0.00001
27	2.89796	1.65280	-0.19663	0.14308	-1.37426	-0.14415	10.19499	0.02119
28	948.74487	3313.11328	0.00004	0.00006	0.62108	0.06569	1.41499	0.00294
29	2.23867	1.00744	0.06526	0.25130	0.25970	0.02752	0.04894	0.00010
30	1.96939	1.89657	-0.06543	0.13466	-0.48586	-0.05143	1.02120	0.00212
16	3.31633	2.22728					1.02120	0.00212

SAMPLE SIZE 98
DEPENDENT VARIABLE IS NOW NO. 17
$\begin{array}{lll}\text { COEFFICIENT OF DETERMINATION } & 0.1592 \\ \text { MULTIPLE CORR. COEFFICIENT } & 0.3990\end{array}$


TABLE I6 TOTAL GROUP KEY 1
SAMPLE SIZE 98
DEPENDENT VARIABLE IS NOW NO. 18
$\begin{array}{lll}\text { COEFFICIENT OF DETERMINATION } & \cdot 0.2856 \\ \text { MULTIPLE CORR. COEFFICIENT } & 0.5344\end{array}$
ANALYSIS OF VARIANCE FOR THE MULTIPLE


TABLE 17 TOTAL GROUP KEY I

SAMPLE SIZE	98	
DEPENDENT VARIABLE IS NOW NO. 19	COEFFICIENT OF DETERMINATION	0.3479
MULTIPLE CORR. COEFFICIENT	0.5898	



SAMPLE SIZE 98
DEPENDENT VARLABLE IS NOW NO. 20

ANALYSIS OF VARIANCE FOR THE MULTIPLE


TABLE 19 TOTAL GROUP KEY 1

SAMPLE SIZE	98	COEFFICIENT OF DETERMINATION
DEPENDENT VARIABLE IS NOW NO. 2181		
0.5640		

DEPENDENT VARIABLE IS NOW NO. 21
MULTIPLE CORIR. COEFFICIENT
0.5640

ANALYSIS OF VARIANCE FOR THE MULTIPIE

SOURCE CF VARIATICA LINEAR	$\begin{aligned} & R E G A \\ & 0 . F \end{aligned}$	SUN OF	MEAN	F	p
DUE TO REGRES'SION..............	9	$\begin{aligned} & \text { SQUARES } \\ & 97.08539 \end{aligned}$	$\begin{aligned} & \text { SQUARES } \\ & 12.13567 \end{aligned}$	$\begin{aligned} & \text { VALUE } \\ & 5.1900 \end{aligned}$	$<.01$
OEVIATION ABOIJT REGRESSICN... TOTAL...	$\begin{aligned} & 89 \\ & 97 \\ & \hline \end{aligned}$	$\begin{array}{r} 208.10870 \\ 305.19409 \\ \hline \end{array}$	2.33830		


VARIABLE	MEAN	STO.	REG.	STO.ERROR	COMPUTEO	PARTIAL	SUM OF SQ.	PROP. VAR.
NO.		OEVIATION	CaEfF.	OF REG.COE.	7 yálúe	CORR. COE.	ADDED	CUH.
1	1.55102	C. 82640	0.03495	0.20239	0.17269	0.01830	11.76604	0.03855
9	4.95640	1.36724	0.02706	0.12708	0.21297	0.02257	8.01096	0.02625
10	3.92406	1.66624	0.19348	0.10906	1.77404	0.18481	13.76885	0.04512
26	34,108.25391	53618.60547	0.00001	0.00000	2.82644	0.28700	21.25259	0.06964
27	2.85796	1.65280	0.16804	0.10519	1.59742	0.16695	16.10809	0.05278
28	\$48.74487	3313.11328	-0.00009	0.00005	-1.79385	-0.18680	6.12321	0.02006
29	2.23867	1.00744	0.02052	0.18476	0.05692	0.00603	2.40085	0.00787
30 21	1.96939 3.31633	1.89657 1.77379	0.27204	0.09900	2.74779	0.27965	17.65501	0.05785

TABLE 20 TOTAL GROUP KEY 1

```
SAMPLE SIZE 98
DEPENDENT VARIABLE IS NOW NO. 22
```

COEFFICIENT OF DETERMINATION
0.2763

MULTIPLE CORR. COEFFICIENT
0.5257

SOURCE OF VARIATION LINEAR			REGRESSIONO.F. SUM OF		MEAN			
OUE TO REGRESSION..............			SQUARES   8 65.61732		$\begin{aligned} & \text { SQUARES } \\ & 8.70217 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { VALUE } \\ & 4.2484 \end{aligned}$	$<.01$	
UEVIATION	IN ABOUT REGR	$\begin{aligned} & \text { ESSION... } \\ & \text { TOTAL... } \end{aligned}$	89 182   57 25	$\begin{aligned} & 30113 \\ & 91846 \\ & \hline \end{aligned}$	2.04833			
VARIABLE	MEAN	STO.	REG.	STO.ERROR	COMPUTEO	PARTIAL	SUM OF SQ.	PROP. VAR.
NO.		OEVIATION	N COEFF.	CF REG.COE.	- T VALUE	CORR. COE.	ALOEO	CUM.
1	1.55102	C. 82640	0.18513	0.18943	0.97733	0.10305	8.70987	0.03457
9	4.95640	1.36724	0.30587	0.11894	2.57169	0.26300	33.27979	0.13211
10	3.92406	1.66624	0.16185	0.10207	1.58559	0.16575	7.37649	0.02928
26	34108.25391	53618.60547	0.00001	0.00000	1.80882	0.18831	6.87327	0.02728
27	2.85796	1.65280	-0.09480	0.09845	-0.96287	-0.10154	0.55812	0.00222
28	948.74487	3313.11328	-0.00007	0.00004	-1.66431	-0.17373	6.82403	0.02709
29	2.23867	1.00744	0.29274	0.17292	1.69290	0.17663	5.78518	0.02296
30	1.96939 3.79592	1.89657 1.61155	-0.02972	0.09266	-0.32079	-0.03398	0.21078	0.00084

## TABLE 21 TOTAL GROUP KEY 1

SAMPLE SIZE 98
DEPENDENT VARIABLE IS NOW NO. 23
COEFFICIENT OF DETERMINATION
0.3311
andilysis of varlance for tre multiple


TABLE 22 TOTAL GROUP KEY 1

SAMPLE SIZE	98	COEFFICIENT OF DETERMINATION
DEPENDENT VARIABLE IS NOW NO. 2401		
0.5197		

ANALYSIS OF VARIANCE FOR THE MULTIPLE


TABLE 23 TOTAL GROUP KEY 1
SAMPLE SIZE 98 COEFFICIENT OF DETERMINATION 0. 2906
DEPENDENT VARIABLE IS NOW NO. 25
MULTIPLE CORR. COEFFICIENT
0. 5391


SAMPLE SIZE 41
DEPENDENT VARIABLE IS NOW NO. 24 analysis of variance for the multiple LINEAR REGRESSIUN

LINEAR REGRESSIUN						
SOURCE DF VARIATION	C.F.	$\begin{aligned} & \text { SUM OF } \\ & \text { SOUARES } \end{aligned}$	$\begin{aligned} & \text { MEAN } \\ & \text { SOUARES } \end{aligned}$	VALUF	p	
DUE TO REGRESSION............	8	99.71220	12.464 .03	5.3374		
DEVIATION ABOUT REGRESSICN...	32	74.72682	2.33521		$<.01$	
TOTAL...	40	174.43903				


$\begin{gathered} \text { VARI ABLE } \\ \text { NU. } \end{gathered}$	MEAN	$\begin{aligned} & \text { STD. } \\ & \text { DEVIATION } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { REG. } \\ & \text { COFFF. } \end{aligned}$	$\begin{aligned} & \text { STO.ERROR } \\ & \text { OF PFG.CRE } \end{aligned}$	COMPUTEN   t value	$\begin{aligned} & \text { PARTIAL } \\ & \text { CTRR. CNF. } \end{aligned}$	$\begin{gathered} \text { SU!! DF } 50 . \\ \text { AIDNEN } \end{gathered}$	$\begin{aligned} & \text { PROP. VAR. } \\ & \text { CUM. } \end{aligned}$
1	1.51219	C.84030	-0.50565	0.31839	-1.58818	-0.21030	0.12315	0.00073
9	4.80073	1.87261	0.02390	0.17664	0.13520	0.07391	9.65355	0.05534
10	3.72683	1.90072	0.28935	C. 18074	1.60093	0.27231	24.14700	0.13843
26	42789.24219	62973.77344	0.00001	0.00000	1.83693	0.20385	19.09410	0.10946
27	2.36585	1.94623	C. 28954	5.18681	1.54788	0.26425	28.97679	0.16611
28	1172.92676	4743.44531	-0.00002	C. 0 C005	-0.41169	-0.07258	0.40305	0.00231
29	2.05377	1.16737	-0.04463	0.35777	-0.12474	-0.02705	4.89744	0.02808
30	1.51219	1.58899	0.43361	0.18808	2.30549	0.3774?	12.41229	0.07116
24	2.19512	2.68829						

TABLE 25 OVER 100, 000 KEY 1
SAMPLE SIZE 41
DEPENDENT VARIABLE IS NOW NO. 23
ANALYSIS OF VARIANCE FOR THE MULTIPLF


TABLE 26 OVER 100, 000 KEY 1

## SAMPLE SIZE 41 <br> DEPENDENT VARIABLE IS NOW NO. 22

analysis of variance fop thf milltiple LINEAR KEGRESSIUN

Source of variatica			C.F.SUM OF   SOUARES		$\begin{aligned} & \text { MFAN } \\ & \text { SOUARES } \end{aligned}$	$\stackrel{F}{\text { VALUE }}$	p		
TOUE TU. REGRESSIUN................			832	70044	8.33755	4.6722	$<.01$		
			10447	1.78452					
TOTAL... 40 123.80493									
+									
$\begin{aligned} & \text { VARIABLE } \\ & \text { NO. } \end{aligned}$	MEAN	$\begin{aligned} & \text { STR. } \\ & \text { DEVIATICN } \end{aligned}$		$\begin{gathered} \text { REG. } \\ N \quad \text { COEFF. } \\ \hline \end{gathered}$	$\begin{aligned} & \text { STD. } \\ & \text { OF R } \end{aligned}$	$\begin{aligned} & \text { COYPUTED } \\ & \text { E. TVALUE } \end{aligned}$	$\begin{aligned} & \text { PARTIAL } \\ & \text { CURK. COF } \end{aligned}$	$\begin{gathered} \text { SUR OF SQ. } \\ \text { AOIIFD } \end{gathered}$	$\begin{aligned} & \text { PROP. VAR. } \\ & \text { } \begin{array}{l} \text { IIM. } \end{array} \end{aligned}$
1	1.51219	C. 84030	0.12647	0.2	0.4,5440	0.08007	1.53545	0.01240	
9	4.30 .073	1.87261	0.58401	0.1	3.78212	0.5E5R1	46.09537	0.37127	
10	3.12683	1.90072	-4. 12531	0.1	-0.79312	-0.13485	0.00075	0.00001	
26	42789.24219	62973.77344	0.00000	0.0	0.90388	0.15776	3.49609	0.02824	
27	2.36595	1.94623	-0.05174	0.1	-0.31682	-0.0559?	2.56794	0.02071	
28	1172.92676	4743.44531	-0.00005	0.0	-0.99090	-0.17254	$4.07066^{6}$	0.03288	
29	2.05877	1.16737	0.67949	0.3	2.17260	0.35853	7.80392	0.06303	
30	1.51219	1.58899	-0. 13109	0.1	-0.73733	-0.13957	1.13447	0.00916	
22	3.82927	1.75930							

SAMPLE SIZE 41
DEPENDENT VARIABLE IS NOW NO. 25
AiNALYSIS OF VARIANCE FOR THF MULTIPLF LINEAR REGRESSION

SOURCE OF VAOIATİA	0.F.	$\begin{array}{r} \text { SUM UF } \\ \text { SOUARES } \\ \hline \end{array}$	$\begin{aligned} & \text { MEAN } \\ & \text { SQUARES } \end{aligned}$	$\stackrel{F}{\text { VALUF }}$	p
DUE TU REGRESSION.	8	43.35057	5.41882	8.0185	
DEVIATION ABOUT REGRFSSION...	32	21.62526	0.67579		$<.01$
TUTAL...	40	64.97583			


$\begin{gathered} \hline \text { VARI AOI.E } \\ \text { NO. } \\ \hline \end{gathered}$	MFAN	$\begin{aligned} & \text { STC: } \\ & \text { UEVIATION } \end{aligned}$	$\begin{aligned} & \text { REG. } \\ & \text { COEFF. } \end{aligned}$	STO.ERRAR OF REG.CIE.	COMPUTED   r Valilf	$\begin{aligned} & \text { PARIIAL } \\ & \text { CCFR. CNF. } \end{aligned}$	$\begin{aligned} & \text { SUM IF SO. } \\ & \text { ADOF } \end{aligned}$	$\begin{aligned} & \text { PR(1P. VAR - } \\ & \text { CIM. } \end{aligned}$
1	1.51219	C. 84030	0.08916	0.17128	0.51472	0.09062	1.06628	0.01641
9	4.80073	1.87261	0.29922	$0 . C 5502$	3.14 .384	0.48637	17.17110	0.26427
10	3.72683	1.90072	-0.01145	$0.097{ }^{2}$	-0.11775	-0.c2081	2.19320	0.03375
26	42789.24219	62573.77344	-0.00000	0.00000	-1.17541	-0.20344	0.00081	0.00001
27	2.36585	1.94623	0.01073	0.10050	0.10680	C.01888	7.24142	$0.111 \% 5$
28	1172.92676	4743.44531	0.00006	0.00003	?.08404	0.34570	0.81000	0.01247
29	2.05877	1.16737	0.88168	0.15246	4.58105	0.72734	12.71582	0.17570
30	1.51219	1. 98899	-0.18054	0.10118	-1.78445	$-0.3 \mathrm{COH}_{4}$	2.151 AC	0.03312
25	4.02439	1.27452						0.0 .312

TABLE 28 OVER 100,000 KEY 1
SAMPLE SIZE 41
DEPENDENT VARIABLE IS NOW NO. 21
$\begin{array}{ll}\text { COEFFICIENT OF DETERMINATION } & 0.4977 \\ \text { MULTIPLE CORR. COEFFICIENT } & 0.7055\end{array}$
afalysis or vafiance fik thf miltiple
LINEAR KEGRLESIUN:

SOURCE DF VAgiatica	D.F.	$\begin{aligned} & \text { SUPA UF } \\ & \text { SOUARES } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { MFAIS } \\ & \text { SOUAFES } \end{aligned}$	VALIIE	p
DUE TO REGRESSIUN.	8	82.00676	10.25084	3.9629	
DEVIATION AROUT REGRESSICN...	32	82.77376	2.5866 .1		$<.01$
TUTAL...	40	164.78 C52			


$\begin{aligned} & \hline \text { VARIABLE } \\ & \text { NO. } \end{aligned}$	MEAN	$\begin{aligned} & \text { STA. } \\ & \text { DEVIATION } \end{aligned}$	$\begin{aligned} & \text { REG. } \\ & \text { COFFFF. } \\ & \hline \end{aligned}$	STU.CRROR OF REG.COF.	COMPUTEO   t Valiff	$\begin{aligned} & \text { PARTIAL. } \\ & \text { COFR. COE:。 } \end{aligned}$	$\begin{gathered} \text { SIM OF SO. } \\ \text { ADDED } \end{gathered}$	$\begin{aligned} & \text { PRJO. VAR - } \\ & \text { CUM. } \end{aligned}$
,	1.51219	C. 84030	-0.35428	0.33509	-1.05727	-0.18372	1.47911	0.00898
9	4.90073	1.47261	0.36185	0.18591	1.94637	0.32535	13.34797	0.08100
10	3.72683	1.90072	-0.07876	0.19022	-0.41406	-0.07300	0.97947	0.00594
26	42789.24219	62573.77344	0.00001	0.00030	$1.4: 3604$	0.2412 ?	18.30405	0.11108
27	2.365E5	1.94623	0.49110	0.19661	2.49781	0.40393	33.62715	0.20407
28	1172.92676	4743.44531	-0.00007	0.00006	-1.25016	-0.2157\%	2.73561	0.01660
29	2.05877	1.16737	-0.44571	0.37654	-1.13370	-0.20482	0.03155	0.00001
30	1.51219	1.58899	0.41795	0.15764	2.11143	0.34969	11.532 C 7	0.06998
21	3.07317	2.02966						

TABLE 29 OVER 100,000 KEY 1
SAMPLE SIZE 41
DEPENDENT VARIABLE IS NOW NO. 20
$\begin{array}{lll}\text { COEFFICIENT OF DET ERMINATION } & 0.7035 \\ \text { MULTIPLE CORR COEFFICIENT } & 0.8387\end{array}$
ACALYSIS OF VARIANCE FHR THE MULTIPLF

SOURCE IIF VARTATITS	D.F.	$\begin{aligned} & \text { SUM OF } \\ & \text { SDIIARFS } \end{aligned}$		valuf	p
OUE TO REGRESSIJN.............	8	113.79269	14.22409	9.4900	
DEVIATIUN ABUUT REGPESSICN...	32	47.96341	1.49886		$<.01$
TOTAL...	40	161.75610			


$\begin{aligned} & \hline \text { VARI ABLE } \\ & \text { NO. } \\ & \hline \end{aligned}$	MEAN	$\begin{aligned} & \text { STO. } \\ & \text { OEVIATION } \end{aligned}$	$\begin{aligned} & \text { REG. } \\ & \text { COEFF. } \end{aligned}$	$\begin{aligned} & \text { STO.FRKOR } \\ & \text { OF FEG.CNE. } \end{aligned}$	COMPUTED   T Valut	$\begin{aligned} & \text { PARTIIL } \\ & \text { COPR. COF. } \end{aligned}$	$\begin{aligned} & \hline \text { SUM liF SO. } \\ & \text { A00FD } \end{aligned}$	$\begin{aligned} & \text { PROP. VAR. } \\ & \text { CIMM. } \end{aligned}$
I	1.51219	0.84030	-0.76715	0.25508	-3.00753	-0.46944	0.11534	0.00071
9	4.80073	1.87261	0.14785	0.14152	1.0447 H	0.18162	11.95299	0.07390
10	3.72683	1.90072	0.25200	0.14480	1.74036	0.20405	10.38457	0.06420
26	42789.24219	62973.77344	0.00001	0.00003	2.32522	0.36018	17.65236	0.10913
27	2.365 ds	1.94623	0.52756	0.14367	3.52493	0.52886	26.44852	0.16351
28	. 1172.92676	4743.44531	-C.00015	0.100004	-3.61217	-0.53819	12.28257	0.07593
29	2.05877	1.16737	-1.09726	0., 28663	-3.82814	-0.56046	3.22308	0.01993
30	1.51219	1.58899	0.69331	C. 15068	4.60127	0.63101	31.73337	0.19618
20	2.60976	2.01095						

SAMPLE SIZE 41
DEPENDENT VARLABLE IS NOW NO. 19
analysis of variance for the multipl.f. LINEAR REGRFSSION

SOURCE OF VARIATIOA	C.F.	$\begin{aligned} & \text { SUM OF } \\ & \text { SOUARES } \end{aligned}$	$\begin{aligned} & \text { MEAN } \\ & \text { SOUARES } \end{aligned}$	VALUF	D
DUE TO REGRESSIJN	8	9E.29849	12.28731	4.675	
DEVIATION ABOUT REGRESSION...	32	82.48203	2.57756		$<01$
TOTAL...	40	180.78052			

TOTAL... 40 180.7805?

$\begin{aligned} & \text { VARIABLE } \\ & \text { NO. } \end{aligned}$	NEAN	$\begin{aligned} & \text { STO. } \\ & \text { DEVIATION } \end{aligned}$	$\begin{aligned} & \text { KEG. } \\ & \text { CIIEFF. } \end{aligned}$	$\begin{aligned} & \text { STO.ERRGR } \\ & \text { OF RFG.C.OF. } \end{aligned}$	COMPUTFO   t valuf	$\begin{aligned} & \text { PARTIAL } \\ & \text { COPR. COHF. } \end{aligned}$	$\begin{aligned} & \text { SUM OF SO. } \\ & \text { Anlifn } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { FRTP. VAP: } \\ & \text { CUM. } \end{aligned}$
1	1.51219	C. 84030	-0.62893	0.33450	-1.88020	-0.31541	0.70536	0.00390
9	4.30073	1.87261	0.15101	0.18559	J. 51.370	0.14238	1.76927	0.00757
10	3.72683	1.90072	-0.13575	0.13988	-0.71492	-0.1253ti	).85294	3.00472
26	42789.24219	02973.77344	0.00001	0.00030	1.24293	0.21460	20.46191	0.11319
27	2.365E5	1.94023	0.53715	0.19627	2.736 .34	0.43552	51.58626	0.28535
28	1172.72670	4743.44531	-0.00013	0.00006	-2.41397	-0.39249	15.07504	0.08339
29	2.05877	1.16737	-0.11713	0.37586	-0.31161	-0.0550)	1.44331	0.00798
30	1.51219	1.98899	0.32105	0.19759	1.62478	0.27606	h. 80459	0.03764
19	2.92633	z. 12591						

TABLE 31 OVER 100,000 KEY 1
SAMPLE SIZE 41
DEPENDENT VARLABLE IS NOW NO. 18
ANALYSIS OF VARIANCE FOR TIHE MULTIPLR

SUURCE OF VARTATICi	D.F.	$\begin{aligned} & \text { SUM CIF } \\ & \text { SOUARFS } \end{aligned}$		value	P
DUE TO REGRESSTON.	${ }^{8}$	$114.936 C 4$	14.36760	6.5504	
DEVIATION AROUT REGRESSICN...	32	70.18604	?.10331		$<.01$
THTAL...	40	185.12207			


$\begin{aligned} & \text { VARI ABLE } \\ & \text { NO. } \end{aligned}$	MEAN	$\begin{aligned} & \text { STO. } \\ & \text { DEVIATIGN } \end{aligned}$	$\begin{aligned} & \text { REG. } \\ & \text { COEFF. } \end{aligned}$	$\begin{aligned} & \text { STO.ERFAF } \\ & \text { OF REG.COE. } \end{aligned}$	COMPUTFD   $T$ Value	$\begin{aligned} & \text { PARTIAL } \\ & \text { COFF. COR. } \end{aligned}$	$\begin{gathered} \text { SUM OF SC. } \\ \text { A.NDF: } \end{gathered}$	$\begin{aligned} & \text { PRIIP. VAF• } \\ & \text { C.IM. } \end{aligned}$
1	1.51219	C. 84030	-0.32695	0.3 C856	-1.J5927	-0.1.3406	5.03646	0.02721
9	4.30073	1.87261	0.24078	0.17119	1.40653	0.24129	2.42945	0.01312
10	3.72683	1.90072	-0.14924	0.17516	-0.35200	-0.14893	0.40591	0.00219
26	42789.24219	62973.77344	0.00000	0.00000	0.36431	0.15112	12.23278	0.06608
27	2.36585	1.94623	0.65970	0.18105	3.64332	0.54152	60.83304	0.32861
28	1172.92676	4743.44531	-0.00009	0.01005	-1.81084	-0.30488	4.26320	0.02303
29	2.05877	1.16737	-C. 74666	0.34673	-2.15342	-0.35577	0.00964	0.00005
30	1.51219	1.98899	0.67102	0.18227	3.68142	0.54545	27.72575	2.16057
18	3.14634	2.15129						

TABLE 32 OVER 100,000 KEY 1


SAMPLE SIZE 41 DEPENDENT VARIABLE IS NOW NO. 16

COEFFICIENT OF DETERMINATION
0.5683
analysis of variance fur thf hultiple
LINEAR REGRESSION

SOURCE OF VATSATIOT	n.F.	SUM OF	पF4N	F	
		SOUARFS	sduapes	value	p
DUE TO REGRESSION..	8	124.03281	15.50410	5.26 .62	
deviation abnut regressicn...	32	94.21133	2.94410		$<.01$
TOTAL...	40	218.24414			


$\begin{gathered} \hline \text { VARI ABLE } \\ \text { NO. } \\ \hline \end{gathered}$	menn	$\begin{aligned} & \text { STDO } \\ & \text { DEVIATICN } \end{aligned}$	$\begin{aligned} & \text { REG. } \\ & \text { COEFF. } \end{aligned}$	$\begin{aligned} & \text { STD.ERROR } \\ & \text { OF REG.COE. } \end{aligned}$	COMPUTEIT T VALUE	$\begin{aligned} & \text { PARTIAL } \\ & \text { COPR. COF. } \end{aligned}$	$\begin{gathered} \text { SUM OF SO. } \\ \text { ADOFD } \\ \hline \end{gathered}$	$\begin{aligned} & \text { ORTIP. VAFP. } \\ & \text { r. } 114 . \end{aligned}$
1	1.51219	C. 84030	0.29128	0.35749	0.81474	0.14256	0.26894	3.00123
9	4.80073	1.87261	-0.05720	0.19834	-0.28839	-0.05092	\$2.02513	0.14674
10	3.72683	1.90072	0.74346	0.20294	3.66350	0.54359	41.35106	3.18947
26	42789.24219	62573.77344	-0.00000	0.00001	-0.04488	-0.00793	0.07050	0.00009
27	2.36585	1.94623	-0.34766	0.20976	-1.65744	-0.28119	10.60193	J.04858
28	1172.92676	4743.44531	0.00006	0.00006	0.98404	0.17138	ก.44780	0.00205
29	2.05877	1.16737	1.13439	0.40171	2.82367	$0.4466,4$	2.92684	3.01342
30	1.51219	1.98899	-0.74243	0.21118.	-3.51567	-0.52785	36. 3 8893	0.16674

TABLE 34 OVER 100,000 KEY 1

| SAMPLE SIZE | 41 | COEFFICIENT OF DETERMINATION | 0.4073 |
| :--- | :--- | :--- | :--- | :--- |
| DEPENDENT VARIABLE IS NOW NO. 15 | MULTIPLE CORR. COEFFICIENT | 0.6382 |  |



TABLE 35 OVER 100,000 KEY 1
SAMPLE SIZE: 41
DEPENDENT VARIABLE IS NOW NO. 14
analysis cF vartance fur the multiple LINEAR PEGRESSIDN

SOURCE CF VARIATION	C.F.	SUM OF	MEAN	$F$	p
		SOUARES	SDUARES	Vallif	
DUE TO REGRESSION...	8	96.22350	12.02794	3.6539	
DEVIATION ABOUT REGRFSSICN...	32	105.33754	3.29180		$<.01$
TOTAL...	40	201.56104			


$\begin{aligned} & \text { VARIABLE } \\ & \text { ND. } \end{aligned}$	ME.AN	$\begin{aligned} & \text { STC. } \\ & \text { OEVIATION } \end{aligned}$	$\begin{aligned} & \text { REG. } \\ & \text { COEFF. } \end{aligned}$	$\begin{aligned} & \text { STO.ERROR } \\ & \text { OF RFG.COE. } \end{aligned}$	r.OMPUTEO   t value	$\begin{aligned} & \text { PARTIAL } \\ & \text { COPR. CCF. } \end{aligned}$	$\begin{aligned} & \text { Suy of sue } \\ & \text { loDEn } \end{aligned}$	$\begin{aligned} & \text { PRITP. VAR. } \\ & \text { CUA. } \end{aligned}$
I	1.51219	C.84030	0.08492	0.37801	0.22439	0.03964	7. 92881	0.00461
9	4.30073	1.87261.	-0.07567	0.20972	-0.35083	-0.06366	24.604411	0.12207
10	3.72683	1.90072	- 0.69610	0.21459	3.24395	0.49747	39.50346	0.17599
26	42789.24219	62973.77344	0.00000	0.00001	0.39975	0.67049	7.11181	0.01048.
27	2.36585	1.94623	-0.12566	0.22180	-0. 0.56 .657	-0.09966	1.75357	7.00870
28	1172,92676	4743.44531	-0.00001	0.06006	-0.09399	-0.01661	0.93606	0.00464
29	2.05377	1.16737	0.85226	0.42477	2.30638	0.33428	0.85427	0.00424
30	1.51219	1.98899	-0.62189	0.22330	-2.78479	-0.44160	25.53174	0.12667
14	4.24390	2.24473						

TABLE 36 OVER 100, 000 KEY 1


TABLE 37 OVER 100,000 KEY 1
SAMPLE SIZE 41
DEPENDENT VARLABLE IS NOW NO. 12
hivalysis of vaelaivce fus the multiolf LIILAR PEGECSSIUN

SOURCE CF VADIATION	D.F.'	दu4 तF	MFAR	5	
		SCUARES	scunats	Valits	p
DUE TJ REGKESSTON.	8	66.37459	6.29682	3.0452	
OEVIAYICN $\triangle$ BUUT REGRESSIOIN...	32	87.18645	$2.7 \overline{4} 43$		$<.05$
TCTAL...	40	153.56104			

TCTAL... 40 153.56104

$\begin{aligned} & \text { VARLABLE } \\ & \text { NO. } \end{aligned}$	MEAN	$\begin{gathered} \text { STO. } \\ \text { DEVIATIUN } \\ \hline \end{gathered}$	$\begin{aligned} & \text { RFG. } \\ & \text { CCFFF. } \end{aligned}$	$\begin{aligned} & \text { STC.ERRUF } \\ & \text { UF FEG.CIF. } \end{aligned}$	cchruten   TVAluf	$\begin{aligned} & \text { Partial } \\ & \text { crakh. Cole. } \end{aligned}$	$\begin{aligned} & \text { SUN UF } \begin{array}{l} \text { SQ• } \\ \text { Ani)En } \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { PRARE. VAF } \\ & \text { rik. } \end{aligned}$
2	1.51219	C. 84030	0.36174	0.34371	1.05186	0.18281	1.67502	0.01091
9	4.80073	1.87261	0.07830	0.19380	$0.410 \mathrm{Cb}_{1}$	0.07244	12.32 .86 c	0.08029
10	3.72683	1.90072	0.21332 .	$0.195 \% 2$	1.04271	$0.1876{ }^{\circ}$	11.94007	0.07775
26	42789.24219	62973.77344	-0.00000	0.00050	-0.20375	-0.05375	1.595.)5	0.01013
27	2.36585	1.94623	0.04127	0.20179	0.2c4b1	0.03613	7.25355	1).114724
28	1172.92676	4743.44531	-0.00000	c.000:06	-3.02631	-0.00465	1.516 .97	0.00066
29	2.05877	1.16737	1.24307	0.38645	3.21665	0.49430	12.76654	. 1.08314
30	1.51219	1.58899	-0. 51249	0.20315	-2.5?207	-0.4.17?9	17.37890	0.11291

TABLE 38 OVER 100, 000 KEY 1
SAMPLE SIZE 41
DEPENDENT VARIABLE IS NOW NO. 11
fivalysis ni variaince fis thr multinf
LIAFAF REGRESSILN


SAMPLE SIZE 41
COEFFICIENT OF DETERMINATION
0.4505

DEPENDENT VARIABLE IS NOW NO. 2
analysis of vaílance fug the multiplf

SOURCF DF VA?IATİA	N.F.	SUV. 17 F	Y[AN	$F$	
		SiJuntes	Sounffs	VAllia	p
DUE TO RECRESSIOV.	3	$37.478 \mathrm{C7}$	4.6 .8476	3.2797	
	37	45.70943	1.42342		$<.01$
TOTAL...	40	63.19750			


$\begin{aligned} & \text { VARI ABLE } \\ & \text { NU. } \end{aligned}$	MEAN	$\begin{aligned} & \text { STD. } \\ & \text { OFVIATTON } \end{aligned}$	REG. CIFFF。	STP. rakion OF RFC.CAE.	rimputen   $T$ VAL!t			$\begin{gathered} \text { FR..16. VAE. } \\ \text { } ;, 11!. \end{gathered}$
1	1.51219	0.84030	0.03605	0.24521	J.14717	$0.026: 11$	1).0.54?	0.60031
9	4 cruci 3	1.872t1	0.21257	$0.13!15$		$0 .: 7125$	15.2781?	1.154 Pt
10	3.77683	1.90072	-0.02312	C.17136	--3.1033)	-0.ceaca	0.67137	0.00207
26	42790.74219	69.373 .77344	-0.00001	0.00309	-1.97617	-0.314:\%	1.76740	0.02725
27	2.36585	1.04623	0.01611	0.14611	0.11023	0.91440	3.57705	0.04300
26	1172.92676	4743.44531	C. 00007	c.0.03014	1.74917	c. $2752 \%$	1.65527	().07338
29	2.35877	1.16737	0.67688	0.27981	3.13104	(1.4i43\%	7.4 (18?	2.08974
30	$1.51 ? 19$	1.988¢9	-0.2728G	0.17710	-2.1547?	-0.36174	C. 8 ¢16 6	0.08272
2	4.13536	1.44211						

TABLE 46 50-100, 000
SAMPLE SIZE 23
DEPENDENT VARIABLE IS NOW NO. 5

KEX 8
COEFFICIENT OF DETERMINATION
0.2635

MULTIPLE CORR. COEFFICIENT

### 0.5133



TABLE 47 50-100,000
SAMPLE SIZE 23
DEPENDENT VARIABLE IS NOW NO. 4

KEY 8
COEFFICIENT OF DETERMINATION MULTIPLE CORR. COEFFICIENT
0.5248
0.7244


KEY 7

SAMPLE SIZE 23
DE PENDENT VARIABLE IS NOW NO． 8

COEFFICIENT OF DETERMINATION 0.3658 MULTIPLE CORR．COEFFICIENT
0.6048



TABLE $49 \quad \mathbf{5 0 - 1 0 0}, 000 \quad$ KEY 7

## SAMPLE SIZE 23 <br> DEPENDENT VARLABLE IS NOW NO． 7

COEFFICIENT OF DETERMINATION
0.3070
nival．ysis of variancf file the yultiplí


$\begin{gathered} \text { VARI AHLE } \\ \text { NG. } \end{gathered}$	MEAN	$\begin{gathered} \text { STC: } \\ \text { OEVIATIGN } \end{gathered}$	$\begin{gathered} \text { KFG。 } \\ \text { CntPF. } \end{gathered}$	STO．ERIVOF． ur infr．ecrif	Computci   TVGLIIF	$\begin{gathered} \text { FAFIIAL } \\ \text { CI:ER. PUF. } \end{gathered}$	$\begin{aligned} & \text { Sllif lif } s r_{i} \\ & \text { soiffn } \end{aligned}$	PRAF. VAF. $C \ln$
	1.82609	0.38633	0.27757	0.41267	J． 01263	$0.116 \% 3$	1.96155	10.04566
2	5.111 .130	0.78644	0.43771	0.44 c 59	0.97359	G． 25142	1.14967	0.02674
3	4.14304	1．51908	－0．16625	0.20516	－0．62699	－0．16526	0.07477	0.00174
9	3.60375	1.07 （15	－0．44119	0.35935	－1．2277t	－0．3117s	1.72441	0.74014
10	2.173191	1．3366．	－0．504\％ 8	0.26 .334	－1．99867	－0．45252	7.28464	0.16 .958
11	0．73915	1.32175	－0．13898	0． 2 ¢05 7	－0．46515	－0．12i37	0.44116	0.01027
12	）．02957	0.01591	－ 9.66415	2＜．3123n	－0．43254	－0．11\％${ }^{\text {\％}}$	0.44223	$0.0102^{\circ}$
13	3．809597	14.55777	0.164 .40	0.01861	0.22571	i． $2+021$	0.10533	11．00252

TABLE 50 50－100，000 KEY 7
SAMPLE SIZE 23
DE PENDENT VARIABLE IS NOW NO． 6
DNALYSIS OF VARIANEC FiM：TII：XULTIPI． LINEAF：rifgr：SSIUR：

SUILSCE UF V	C．fart：SSIMA				
		Sclua fes	SDMEf：S	value	p
OUE TU RLGRESSIJN．	8	17.65689	2.21196	1.36 .07	
DEVIATINV ABOIT－CGEEESICN．．．	14	22.74792	$1.67+95$	－s ${ }^{\text {a }}$	n．s．
TOTAL．©	22	40.43421			


$\begin{aligned} & \text { VARIABLE } \\ & \text { ND. } \end{aligned}$	HCAN	$\begin{aligned} & \text { STCO } \\ & \text { DEVIATION } \end{aligned}$	$\begin{aligned} & \text { KCG. } \\ & \text { CIICFF. } \end{aligned}$		Cの：ィPUTF！   $T$ Valut	$\begin{aligned} & \text { PAETIAL } \\ & \text { CQRE. r:H. } \\ & \hline \end{aligned}$		$\begin{aligned} & \text { Prolip. VAF. } \\ & \text { rini. } \end{aligned}$
1	1.02604	c．880E6	0.20633	C．36072	0.573 .3 H	$0.1514 \pi$	2.79659	1.06916
2	5.18130	0.78044	0.17140	0.333 .10	0． 4.3742	0.11611	C．0．0abs	1．00n01
3	4.14304	1． 51968	0.08001	0.23179	3．34520	0.07127	5.15527	n． 12750
9	3.10370	1.177615	－0．52 ${ }^{\text {a }}$	0．31412	－1．6，4108	－0．4．0933	3.17590	2．07864
10	2.17391	1.33662	－－）．46678	0.23456	$-1.90032$	－0．40\％\％「	5.85109	1．1．14470
11	2.73013	1.32175	－0．12747	6.26003	－3） 41434	－0．12ri43	0.47451	0.011 Hf．
12	0.02957	0.01551	－2．40136	15.53304	－0．1229t	－0．032\％4	0.03937	0.00097
13	2．16i5 3	18.155777	0.100549	V．016．27	2．22717	0．0897？	ก． 13466	$0.00 \mathrm{Cl}_{4} 9$
6	3.73913	1.35571						． 0 （1）

## SAMPLE SIZE 23

$\begin{array}{lll}\text { COEFFICIENT OF DETERMINATION } & 0.6120 \\ \text { MULTIPLE CORR. COEFFICIENT } & 0.7823\end{array}$
AHALYOIS TIF VARIANCE FGR THI YULTIPLE

Solurce cif viniaticin	U.F.	$\begin{aligned} & \text { sum UF } \\ & \text { scunsers } \end{aligned}$	$\begin{aligned} & \text { MEAN } \\ & \text { solaris } \end{aligned}$	val!!!	p
DUE TG REGAESSICN.	3	1t.44470	2.35:39	2.7605	
i) VIntign anjui Regkisillin...	14	10.62493	0.74404		$<.05$

TUTAL... 22 26.06963

$\begin{aligned} & \text { VARIAJLF } \\ & \text { NO. } \end{aligned}$	MF AN	$\begin{gathered} \text { STS. } \\ \text { neviatidn } \end{gathered}$	$\begin{aligned} & \text { FEC. } \\ & \text { CCEFF. } \end{aligned}$		$\begin{aligned} & \text { COAPUTED } \\ & \text { i val.uf } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { pARTI:L } \\ & \text { rrf:. r'). } \end{aligned}$	$\begin{gathered} \text { SiJVisfso. } \\ \text { ardfo } \end{gathered}$	$\begin{aligned} & \text { ponp. VAF - } \\ & \text { fim. } \end{aligned}$
1	1.34604	0.30688	0.36745	0.24420	1.50474	0.3731 ?	1.53239	J.0719?
2	5.15130	C. 78644	0.34819	U.2.6604	1.31870	0.33117	0.90310	J.0112 H
3	4.14304	1.51908	-0.11525	0.15691	-0.7,451	-0.15263	7.13256	J.03495
9	3.00970	1.c\%els	-C. 37179	$0.71 ? n 4$	-1.74042	-0.4.3136	6. 60 ¢ 7 !	$\underline{0.03010}$
10	2.17311	1.33662	-0.43002	0.15379	-2.73814	-0.5463?	5.5847:	7.20784
11	2.73915	1.32175	-0.09681	0.17600	-0.54193	-3.14457	$0.22 \times 34$	0.09105
12	J. 22957	0.01551	-41.21269	13.82114	-3.11113	-(0.6,40)3	7.50.315	6. 21924
13	3.36.957	18.55777	$0.00 \div 97$	0.01102	0.45094	0.117 .65	0.15142	1.00564

TABLE 52 50-100,000 KEY 7
SAMPLE SIZE 23 COEFFICIENT OF DETERMINATION 0.4420
DEPENDENT VARLABLE IS NOW NO. 4

### 0.6648



SAMPLE SIZE 23 DEPENDENT VARIABLE IS NOW NO. 7

COEFFICIENT OF DETERMINATION
0.2252

WNLLYSIS CF VAPIAFCE PUG TH! MUL IPL: LIVTAF FFCRESSIINN

SOURCC L̇F VIRRIATIEA	C.f.		$\begin{gathered} \text { MEAR } \\ \text { SSUAFES } \\ \hline \end{gathered}$	$\begin{gathered} \text { F } \\ \text { vilu: } \\ \hline \end{gathered}$	p
DUE TO PEGRFS SITJW.............	B	16.104143	2.0.531\%	0.506 .7	
	14	4.5 .17013	2.8411:		n.s.
T0:Al ...	22	71.21753			


$V A R I \triangle B L E$ iné.	MEAS	$\begin{gathered} S T 0: \\ \square V 1 A=1 E N \end{gathered}$	$\begin{gathered} h E G . \\ \text { C.i:CFF. } \end{gathered}$	$\begin{aligned} & \text { STu. G̈̈niun } \\ & \text { uf fer. cinf. } \end{aligned}$	$\begin{gathered} \text { C7oifu* f: } \\ 7 \text { vfillif } \\ \hline \end{gathered}$	$\begin{gathered} \text { finglal } \\ \text { cris: colf. } \end{gathered}$	$\begin{gathered} \text { Evi lif } \\ \text { for)f } \end{gathered}$	$\begin{gathered} \text { Wegr. VAF. } \\ \text { rov. } \end{gathered}$
1	1.43470	9. 78775	0.09464	0.72379	O.1.?cts	0.10316	?.19A2'1	1.03in87
2	4.10217	1.91450	-0. Cndris	0.32 c 50	-17. 2 (i)4 6	-i).(1721:	7.00? 07	0.112913
3	3.52337	1.85099	0.25341	0.25313	0. 55002	0.2?153	3.53056.	1.17776
9	44387.51553	61052.41250	-0.0nuvic	0.0 (00!	-0.51171	-0. $1: 5,4.1$	-).673.4	0.0010 .3
10	2.4347,	1. 80469	C.01483	U. 3 6it: 3	.).05410	0.1)144!	0.57181	1).0075
11	1.010'32	1).01405	6.46541	39.35 .82	J. 104 ¢ 7	C. $\left.\mathrm{c}^{\prime}+3\right) \mathrm{C}$	2.5340?	0.095 56
12	1.84820	1.1037 C	0.49727	$0.626^{29}$	5.7977,	(1.2) 35	1.72719	0.02475
13	$1.56,52.2$	0. 04348	C.42139	C. $7110 \%$	1. 40311	$0.1507 \%$	1.43735	$1.0 \% 018$
7	3.65217	1.74921						

TABLE 55 50-100,000 KEY 6
$\begin{array}{ll}\text { COEFFICIENT OF DETERMINATION } & \mathbf{0 . 5 0 5 4} \\ \text { MULTIPLE CORR. COEFFICIENT } & \mathbf{0 . 7 1 0 9}\end{array}$


SUURCF CF VİRIATICA	C.F.	SUS: IIF shunats	$\begin{aligned} & \text { AEMN } \\ & \text { Sollafte } \end{aligned}$	$\begin{gathered} \text { 「 } \\ \text { value } \end{gathered}$	p
DUE TO RCGEESSICH.....	8	55.59544	6.94943		
DEVIATION ABIUU RIGRESSITN...	14	54.40456	3.98604		n.s.
TCTAL...	22	110.00000			


$\begin{aligned} & \text { VARIABLE } \\ & \text { NO. } \end{aligned}$	NEAIN	$\begin{gathered} \text { ETO. } \\ \text { neylitun } \end{gathered}$	$\begin{aligned} & \text { REG. } \\ & \text { CIFFFF. } \end{aligned}$	$\begin{aligned} & \text { ETO. Efobit } \\ & \text { ir frci.ror: } \end{aligned}$	$\begin{aligned} & \text { CriAPUTEU } \\ & \text { T VALUF } \end{aligned}$	$\begin{gathered} \text { PGRTIAL } \\ \text { Crit. ril. } \end{gathered}$	$\begin{aligned} & \text { SH4: WIF SO. } \\ & \text { andr? } \end{aligned}$	DROM. VAF. rim.
1	1.43473	C. 73775	-C. 19379	0.724617	-0.26742	-i.0712?	0.29294	0.0786
2	4.83017	16:2456	-2.1111.3	11.32019	- 1.216 .670	-0.11;755	0.12319	$7.0011 \%$
3	3.62,137	1.85099	0.23726	J. 2460.3	0.810146	$0.205^{4}$	16.65976	$0.1514 ?$
9	4436.7 .51953	$6105 ? .81250$	-0.000)(0)	ciercoid	-0.110521	-0.0.04944	0.00000	3.00600
10	2.13470	1.80409	-9.20.460	0.36406	-i) 726180	-0.1006.]	4.74765	11.04861
11	0.1)10.2	C.01465	6.9. 0.9501	34.11037	1.73801	0.42960	21.74.247	. 19797
12	1.04 iti	1.10370	0.17370	0.62200	11. 23742	9.07657	0.01711	).00016
13	1.3052	0. 184748	0.94729	0.7 C(1)9	1.24117	U. $237!1$	6.99723	1. $166^{2} 61$
6	$3 . \operatorname{cocos)}$	2. 23607						

TABLE 56 50-100,000 KEY 6


TABLE 57 50-100,000 KEY 6
SAMPLE SIZE 23 DEPENDENT VARIABLE IS NOW NO. 4
aNALYSIS DI VAFIANCE FUA THE VULTIPLT LINEAK REGIAESSIUN


TABLE 58 50-100,000 KEY 5
SAMPLE SIZE 23
DE PENDENT VARIABLE IS NOW NO. 8
 LIHEAE iFGE!SSI!日n



TABLE 59 50-100,000 KEY 5
SAMPLE SIZE 23 COEFFICIENT OF DETERMINATION 0. 3522
DEPENDENT VARIABLE IS NOW NO. 7
ANALYSIS OF VARTANCF FIM THI HMTIMI?


SAMPLE SIZE 23
DEPENDENT VARIABLE IS NOW NO． 6
AMALY；IS Cif VaElafce fill the matilfit

SOURCE CF VAFIATIUA	O．F．	$\begin{array}{r} \text { SUN Uf } \\ \text { SIUYかFS } \end{array}$	$\begin{aligned} & \text { REAN } \\ & \text { SOUASES } \end{aligned}$	$\begin{gathered} \text { Fi } \\ \text { val.11: } \\ \hline \end{gathered}$	p
OUE TO REGRESSIO＇d	8	25．4！569	3.1 tiol	1．37el	
	14	32．51031	2．32：10		n．s．
TOTAL．．．	2.2	53．00．J00			


$\begin{gathered} \hline \text { VARI AULE } \\ \text { NO. } \end{gathered}$	MEAT		$\begin{aligned} & \text { REC. } \\ & \text { CHEFF. } \end{aligned}$		$\begin{aligned} & \text { CO.APUTF! } \\ & \text { T VALII } \\ & \hline \end{aligned}$	$\begin{gathered} \text { ririmat } \\ r i=. r_{1} . \end{gathered}$		$\begin{aligned} & \text { 26.10. VAF. } \\ & \text { CIIN. } \end{aligned}$
1	1．326C7	0.886 98	C．11850	C．53722	$0.121 ?$		C．23116	i）．c0399
4	5.13130	3.78641	1．c：1\％ 2	0.51314	2，113144	0，4 4.364	；2．503nt	1．34708
5	4.14304	1.51908	0.13800	0.30836	0.463 22	0.17276	0.03104	3．0000？
9	10223.60547	51478．Silt 25	－2．10040	0．0raid	－0．122：1	－0．013．20；	0．31411：	1．0nu\％\％
10	3.65670	1．07ish	－0．17396	C． 38263	－0．45430	－0．12061	9．01756	n．couso
11	1027．13553	2029.29270		O． $0^{(00)}$	0．$) 1794$	0.03477		1．11009a
12	2.57521	0.63795	－0．733：96	0．72136	－1．01747	－0．30324）	1.64373	u．r．2apr
13	2．951．5i：	1.55145	－0．17910	0.2 .7531	－0．04720	－0．1：7：3\％	i． 97209	：1．01，77
6	4．cccoo	1．62？69						

TABLE 61 50－100，000 KEY 5
SAMPLE SIZE 23
DEPENDENT VARIABLE IS NOW NO． 3
COEFFICIENT OF DETERMINATION
0.2772

MULTIPLE CORR．COEFFICIENT
0.5265




VARIABLE NU．	NEGN	$\begin{aligned} & \text { STO. } \\ & \text { TFVIATlliv } \end{aligned}$	$\begin{gathered} \text { KEF. } \\ \text { CNEFA. } \end{gathered}$	$\begin{aligned} & \text { STG. Cuark } \\ & \text { UF Gra.com. } \end{aligned}$	CกュpuTFi）   －valuf			
1	1．9200゙y	0．pentis	$0.763 \% 4$	0.76397	1.03559	0． 25565	11.014698	0.12145
4	5.18130	0.710 .644	－0．436，73	0.7 ？ 0.73	－0．5984：	－i）．19764	1.31442	0.03633
5	4.14304	1．51706	0.05704	0.42421	J． 13446	0．03591	0.04457	$0.00 n 49$
9	39223．50547	57470．906，25	0.10001	0.004601	0.60636	$0.16 .00 \%$	9.80 .95	1．0．1く45\％
10	3.1 JJE 70	1.07615	－0．07904	0．54\％20	－1）．14524	－0．03c7？	0.41011	：）．00451
11	1032．02593	2.320 .80370	0． 00070	$0.018{ }^{\text {d }}$	0.71012	$0.156 \%$	1.95934	3． 12148
12	2．57321	1）．03795	－0．31305	1.02544	－．）．32517	－0．dil？	$0.13 ? 13$	）．bतots
13	2.45652	1．55149	－ 0.208180	$0.301 \% 1$	－3．73706	－0．19\％49	2.5556 .74	4．32811
3	3.75652	2.03322						

TABLE 62 50－100，000 KEY 5


SAMPLE SIZE 23
DEPENDENT VARLABLE IS NOW NO. 6
Alíal Yjis dof vipiance for the meltiple

SOURCF CF VÁñATIOA


SOURCF CF VȦ̃lation	D.F.	$\begin{aligned} & \text { SUP CR } \\ & \text { Spunqe: } \end{aligned}$	$\begin{gathered} : 1 \Gamma .14 \\ S!9116.4 \mathrm{~S} S \\ \hline \end{gathered}$	$\begin{gathered} F \\ \text { VALUI } \\ \hline \end{gathered}$	p
DUF TU REGRESSILN............	6	15.08689	1.38611	0.6975	
DEVIATION ABAUI FEEGETSSICN...	14	38.12843	2.72347		n.s.
TnTAL...	22	52.21753			


$\begin{aligned} & \text { VARIABLE } \\ & \text { NO. } \\ & \hline \end{aligned}$	FFAM	$\begin{aligned} & \text { sin. } \\ & \text { Dev!atiun } \end{aligned}$	$\begin{aligned} & \text { QEG. } \\ & \text { COEPF. } \end{aligned}$	$\begin{aligned} & \text { STL.CRNGS } \\ & \text { UR GFC.COK. } \end{aligned}$	COI:PUTEO   i value	$\begin{aligned} & \text { pabilil } \\ & \text { rort. cit. } \end{aligned}$	$\begin{gathered} \text { SII: lir } 5 \text { ? } \\ \text { ifurn } \end{gathered}$	$\begin{aligned} & \text { PIRIP. VAD. } \\ & \text { rUM. } \end{aligned}$
1	1.826 - 9	C. 88648	0.33496	0.55179	1).66153	0.17414	3.15709	11.05932
7	5.18130	$0.736: 44$	-0.32453	0.55571	-0.54378	-6.11421	3.1003 .3	i).05r7a
8	4.14304	1.51\%98	0.19293	0.? 3 305	1.598120	0.15761	S. CJK?	0.09407
2	39223.60547	57478.90¢25	C. 10000	C.ciuni	3.32226	U.16.5F1	0.71 non	$0.0137 \%$
10	3.60370	1.07615	-0.24284	0.41443	-0.53595	-0.1547?	0.33253	J.00625
11	1022.15593	2635.29370	0.60021	0.00021	0.90373	0.7464 .4	$? .719717$	4.05181
12	2.57521	1). 63793	0.06834	0.78121	0.013748	0.02177	11.01361	).00026
13	$2.9565 \%$	1.45149	0.011 .97	C.OSP15	ก. $)$ (6,36\%	(1). $1.1(1)$	1.0116;	$0.003)$
6	4. 34763	1.55531						

TABLE 64 50-100,000 KEY 4
SAMPLE SIZE 23
DEPENDENT VARIABLE IS NOW NO. 5
ANALYSIS OF VAFIANCR FINR THIF MULEIPI :
LINFAR FFGPESCIUN

SOURCE CF VAKIATIUN	F. .F.	$\begin{array}{r} \text { sun } 118 \\ \text { scuakr.e } \end{array}$	$\begin{aligned} & \text { Mए.नN } \\ & \text { ral/APF:S } \end{aligned}$	$\begin{gathered} \text { r} \\ \text { valur } \end{gathered}$	P
DUE TU REGRESSIUN.	8	23.42401	2.42303	2.C178	
JEVIATIlly ABOU REGFFSEICN...	14	20.31575	1.45109		n.s.
TCTf.L...	22	43.73926			


$\begin{aligned} & \text { VARIABLE } \\ & \text { NO. } \end{aligned}$	NEAN	$\begin{gathered} \text { STO. } \\ \text { OEVMATAKi } \end{gathered}$		$\begin{aligned} & \text { STU.5RマOZ } \\ & \text { Of } \end{aligned}$	$\begin{aligned} & \hline \text { Criw! Jita } \\ & \text { i yalur: } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { raf } \quad \mathrm{PAL} \\ & \text { rriry CaF. } \end{aligned}$	$\begin{gathered} \text { 3ut of } 50 . \\ \text { nexfon } \end{gathered}$	$\begin{aligned} & \text { 10011P. VNF. } \\ & \text { rik. } \end{aligned}$
1	1.32604	0.83688	0.49516	0.42467	1.16741	U.2,753	8.44765	0.12307
7	5.13130	C. 78644	-0.09772	0.4056 .1	-1).24334	-0.604451	$0.00 \cdot 608$	J.ncung
8	4.14304	1.51906	0.31446	0.23531	1.3335\%	0.33572	8.0 .5113	9.19779
9	32223.60547	5747\%.906.25	0.00000	$0 . C \cdot 001$ !	0.11016	0.r.394?	0.16.75\%	0.nisa?
10	3.501770	1.07615	-C. 29420	0.30251	-0.9725.5	-0.25157	9.92787	U.12'1?
11	1032.32593	2029.29370	0.090109	C.) COIf.	0. 53032	0.153?7	1.79753	n.ikiln
12	2.57521	C. 63795	-0.429 914	C.57.)34	-0.75345	-0.1.3740	1.90905	3.04365
13	2.95652	1.55149	0.2232 R	0.21783	1.012598:	0. 28.144	1.92747	1. 13403
5	5.52174	1.41002			1.0 .2 .97.	N.1.t. 4	1.3774	1.134?

TABLE 65
50-100, 000
KEY 4
COEFFICIENT OF DETERMINATION 0.3504
MULTIPLE CORR. COE FFICIENT
0.5919

DEPENDENT VARIABLE IS NOW NO. 4

## COEFFICIENT OF DETERMINATION <br> 0.5355 <br> MULTIPLE CORR. COEFFICIENT <br> 0.7318

A.VALYSIS OF VARIANCE FOK ThF MUITIPIf

SOURCE UF VINIIATIJA	D.F.	SIJA Pir scunlits	$\begin{aligned} & \text { Mr.nis } \\ & \text { souASfes } \end{aligned}$	$\begin{gathered} F \\ \text { vilur } \end{gathered}$	p
DUE TU RFGRESSICN.............	R	24.46671	3.75034	0.9434	
DEVIATION AROUT REGKFT: LIVU.e.	14	44,35947	3.23496		n.s.
TCTAL...	22.	65.82617			


$\begin{gathered} \text { VARIAULE } \\ \text { NO. } \end{gathered}$	MTAN	$\begin{gathered} \text { STU. } \\ \text { SUVIA'IGN } \end{gathered}$	$\begin{gathered} \text { Efic. } \\ \text { certr. } \end{gathered}$	$\begin{aligned} & \text { STH. CeB.. } \\ & \text { OF REG.Cur. } \end{aligned}$	C(1.1PiJEO   T VALIIE	$\begin{aligned} & \text { fnETIAL } \\ & \text { curf. Eny. } \end{aligned}$		$\begin{aligned} & \text { PriUn. VAF. } \\ & \text { C.lin. } \end{aligned}$
1	1.32657	C. Eftb	1.07657	0.634.56	1.724J9	0.414?9	8.81103	3.12019
7	5.12136	0.78644	-.7.11885	0.0 .0612	-1.3066 ?	-0.06i6i7	O. 10594	1.00281
8	4.17304	1.51968	0.13800	0.35236	0.39165	$0.1041)$	2.69248	1.03756
9	34223.610547	5747R, ci625	-0.00011	C.OCCO)	$-3.61345$	-0.2111.9	0.6 .2 i.97	).01323
10	3.00373	1.07615,	-0.73127	0.45737	-1.61777	-0.376.36	?.7.\%92	7.119340
11	1032.72503	2025, 0.9370	0.00027	0. 00012 C	1.17446	0.200619	5.92136	11.118480
12	$2.373 . ? 1$	0.53795	-0.672\%3	0.952 .17	-7.78163	-0.206\%	1.4650?	9.0700s
13	2.97059	1.95149	$-0.15416$	i). 2351 c	$-247107$	-0.12579	O.72E15	0.01043

TABLE 66 50-100,000 KEY 4

## SAMPLE SIZE 23 <br> 3

COE FFICIENT OF DETERMINATION
0.1902 MULTIPLE CORR. COEFFICIENT
0.4361

IUALYSIS UF VARIANCE FOD THE MULTIPLE LINEAR FTGINESSIUN


SAMPLE SIZE 23
DEPENDENT VARIABLE IS NOW NO. 2
Analysls of Visifict fini raz vultar: 1.11.EA: FEGRFESIU!

SOURCE JF VAF.iAtIoh	П.F.	$\begin{array}{r} \text { SUA OF } \\ \text { SRUALF } \end{array}$	VEAN SGUNFE:	valur	p
OUE TU REGRFSSIUN..	8	6.71274	: 0.83909	0.4011	
DEVIATION ARIOUT EFCREFSSICK...	14	25.47719	1.31790		n.s.
TOTAL...	22	$32.189 ¢ 94$			


$\begin{aligned} & \text { VARI ABLE } \\ & \text { NO. } \end{aligned}$	HEALS	$\begin{aligned} & \text { STNo } \\ & \text { MEVIATIITN } \end{aligned}$	$\begin{aligned} & \text { hEG. } \\ & \text { Caf: } \mathrm{FF} \text {. } \end{aligned}$	$\begin{aligned} & \text { STOEERFC? } \\ & \text { lif heG. PME. } \end{aligned}$	$\begin{aligned} & \text { COMPIJTR } \\ & \text { i VALIJF } \\ & \hline \end{aligned}$	$\begin{gathered} \text { PAFTIML } \\ \text { ciu\&. Cire. } \end{gathered}$	$\begin{aligned} & \text { SIIT. nf } 5 ?- \\ & \therefore n, \text { Jfn } \end{aligned}$	$\begin{aligned} & \text { PFCP. VAH. } \\ & \text { r.IM. } \end{aligned}$
1	1.326009	C.88688	0.0 .0052	0.47557	1.28018	0.32372	0.70249	0.02187
7	5.18130	0.78644	0.22219	0.45476	0.48912	C. 1,767	i, norine.	Jorinola
8	+.14304	1.51908	-0.21895	0.76407	-0.82914.	-0.210? 5	0.69309	3.00283
9	30.23 .50547	57478. SOE 25	-0. 0000	0.001001	-0.5.5631d	-0.14394	0.0.3000	3.00non
10	3.63375	1.07615	-0.39491	0.33677	-1.16574	-0.2974iu	2.38164	0.07390
11	1032.32593	2029.29370	0.00015	C.0.018.	1.84213	0.21975	0.36018	O.011147
12	2.57521	0.63795	0.51344	0.63858	0.304 .13	0.21009	2.19715	V.06826
13	2.75 552	1.55149	-0.17758	0.24371	-.9.72963	-0.17115	0.068 .15	0.133001
2	4.02913	1.20962						

TABLE 68 25-50, 000 KEY 27

SAMPLE SIZE $\quad 13$DEPENDENT VARIABLE IS NOW NO. 6					COE   MUL	FICIENT OF D TIPLE CORR.	DETERMINATION COEFFICIENT	$\begin{aligned} & 0.9911 \\ & 0.9956 \end{aligned}$
ANALYSIS OF VARIANCE FUR THE MULTTPLELINEAP. P.FGRESSION								
SOURCE OF VARIȦTION			D.F. S	$\begin{aligned} & \text { SUM OF } \\ & \text { SQUARES } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { MEAN } \\ & \text { SQUARES } \end{aligned}$	FALUE	p	
DUE TO REGRESSION.............. DEVIATION ABOUT REGRESSICN...			$\begin{aligned} & \hline 8 \\ & 4 \\ & \hline \end{aligned}$	94679 05321	$\begin{aligned} & 0.74335 \\ & 0.01330 \\ & \hline \end{aligned}$	55.8771	<.001	
TOTAL... 12				6.00000				
.								
$\begin{aligned} & \text { VARTABLE } \\ & \text { NO. } \end{aligned}$	MEAN	$\begin{aligned} & \text { STO. } \\ & \text { OEVIATION } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { REG. } \\ & \mathrm{N} \text { COEFF } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { STO.ERROR } \\ & \text { OF RFG.COE. } \end{aligned}$	$\begin{aligned} & \text { COMPUTED } \\ & \hline \text { t VALUE } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { PARTIAL } \\ & \text { CORR. COE. } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { SUM OF SQ. } \\ & \text { AOOFO } \end{aligned}$	$\begin{aligned} & \text { PRTP. VAR. } \\ & \text { CUM. } \end{aligned}$
1	1.61538	0.96077	-0.91074	0.13295	-6.85027	-0.95990	0.0	0.0
2	4.96231	O. 88709	0.61110	0.08427	7.25200	0.96399	2.27962	0.37994
3	4.48230	0.81937	-0.92776	0.19877	-4.66752	-0.91913	0.6888 ?	0.11490
7	20745.46094	$22896.03906^{\circ}$	0.00003	0.00000	7.60138	0.96707	0.17490	0.02915
8	2.01538	1.60927	-0.67648	0.09665	-6.99959	-0.96150	1.01757	0.16959
9	513.53833	742.02246	0.00059	0.00017	3.48950	0.86754	0.70597	0.11766
10	2.46153	0.51350	0.65697	0.08987	7.31040	0.96454	1.00613	0.16769
11	1.46154	1.71345	-0.09130	$0.03 \mathrm{A78}$	-2.35434	-0.76204	0.07373	0.01229



SAMPLE SIZE 13
DEPENDENT VARIABLE IS NOW NO. 5
ANALYEIS IU VAOIANRF FRD THE MIILTIPLF


TABLE 73
25-50,000
KEY 25

| SAMPLE SIZE | 13 | COEFFICIENT OF DETERMINATION | 0.9478 |
| :--- | :--- | :--- | :--- | :--- |
| DEPENDENT VARIABLE IS NOW NO. 4 | MULTIPLE CORR. COEFFICIENT | 0.9735 |  |

DEPENDENT VARIABLE IS NOW NO. 4
0.9735

ANALYE!C MF VADIANCE FRR THE MIILTIPI.F

SEIIPC.F GF VARIATIIN	n.F.	$\begin{aligned} & \text { CIMM OF } \\ & \text { COIIARFS } \end{aligned}$	$\begin{aligned} & \text { MFAN } \\ & \text { COIIAPFC } \end{aligned}$	$\begin{gathered} F \\ \text { VAIIIF } \end{gathered}$	p
Dilf tor Rfipgscinn. ............	A	2.91639	0.36455	9.0706	
SEVIATION AROIT REFIDFSSIMN,..	4	0.16076	0.04019		$<.05$
THTAl...	17	3.07715			


$\begin{gathered} \text { VARIARLF } \\ \text { NO. } \end{gathered}$	MEAN	$\begin{aligned} & \text { sTn. } \\ & \text { مEviATION } \end{aligned}$	$\begin{aligned} & \text { PrFo. } \\ & \text { CNFEE. } \end{aligned}$	CTD.FPDRP OF PEG.CRE,		$\begin{aligned} & \text { PARTTAL } \\ & \text { PORD. PNE. } \\ & \hline \end{aligned}$	CIMM חF CO. ADREN	$\begin{aligned} & \text { DRNP, VAD. } \\ & \text { C.IMM. } \end{aligned}$
1	1.6153 A	0.96077	-0.52582	0.23108	-2.27548	-0.75111	n. 85471	0.27776
$?$	4.96721	0.88709	0.64907	0.14646	4.43178	0.91146	0.22200	0.07217
3	4.48230	O.R1937	-1. 2.6556	0.34549	-3.66313	-0.87770	0.09849	0.03136
7	20745,46094	27AAR.029\%6	$0.003 n 3$	n.nnonl	4.80757	n.073:5	0.69602	0.22619
A	2.61538	1.60927	-0.57213	0.16798	-3.40501	-0.86? 31	0.56491	0.189158
$\bigcirc$	513.53833	742.02246	0.0 nn5?	0.00070	1.76757	O.fR2?	0.44813	n.14:6?
10	2.46153	0.51350	-0.10136	0.15620	-0.64987	-0.30859	0.02815	0.00915
11	1.46154	1,71345	ก, 17578	n. 0 R74n	n.3A170	0.18751	O.0n5ah	0.00190

TABLE 74 25-50,000 KEY 24

SAMPLE SIZE 13 DEPENDENT VARIABLE IS NO	O. 6		COEFFICIENT OF DETERMINATION MULTIPLE CORR. COEFFICIENT			$\begin{aligned} & 0.7580 \\ & 0.8707 \end{aligned}$
ANALYCTS NF VADTANICF FCR THF MIITTIPIE						
gmidre nf VARTATION	n.F.	$\begin{aligned} & \text { SIIM NF } \\ & \text { SOIIARF? } \end{aligned}$	$\begin{aligned} & \text { MFAN } \\ & \text { CDIIAPFS } \end{aligned}$	$\begin{gathered} \mathrm{F} \\ \text { vilitir } \end{gathered}$	p	
DIIF TM RFT, FSSSINN..	A	3.84849	0.4P106	1.56		
DFVIATITN AADIT RFGRESCITAN...	4	1.22845	0.30711		n.s.	
THTAL..	12	5.07693				


$\begin{aligned} & \text { VARTAALE } \\ & \text { NO. } \end{aligned}$	MFAN	$\begin{aligned} & \text { STR. } \\ & \text { חEVIATINM } \end{aligned}$	$\begin{aligned} & \text { RFF. } \\ & \text { rnfFF. } \end{aligned}$		rinmplifan   T VAlliff	$\begin{aligned} & \text { DKOTVAL } \\ & \text { rnop. rnf. } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Timm nf Sn. } \\ & \text { annen } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { PROP. VRO. } \\ & \text { rilic. } \end{aligned}$
1	1.61539	0.96077	-0.066n?	0.63878	-0.10335	-0.05161	0.10470	0.02067
$?$	4.96731		$0.2013 n$	0.40487	0.49718	n. 24125	0.41747	$0.082 ? 3$
7	4.48230	n. 81937	0.14590	0.95503	0.15286	ก.07670	0.06155	n.n121?
7	20745.46094	2JAAG.03906	D.nnon?	0.0 กñ?	1.1092,	0.51294	0.9980n	0.19658
8	?.61.539	1.60927	-0.1357A	0.46436	-0.2024	-0.1446t.	1.47440	0.290141
9	513.53833	74?.0224	- ח. חп05R	0. 00012	-0.71449	-0.3364?	0.09877	0.01945
10	2.46153	0.51350	-0.72045	0.43170	-0.78613	-0.7658?	0.43257	0.08520
11	1.46154	1.71745	0.17177	0.18632	0.92194	0.41 .963	0. 26104	0.05147

TABLE $75 \quad \mathbf{2 5 - 5 0 , 0 0 0}$ KEY 24
SAMPLE SIZE 13
DEPENDENT VARIABLE IS NOW NO. 5 ANAIMSIE NE VADIAMIF FRO THF MILLTIOIF IINFAQ RFPIDFSEINN


TABLE 76 25-50,000
KEY 24
SAMPLE SIZE 13
DEPENDENT VARLABLE IS NOW NO. 4
ANALVEIS NF VADIANCF RMO THF MIITIE I InTAR ofrogfseinn:

eniper ne vaotatine	n.f.	$\begin{aligned} & \text { SIMM OF } \\ & \text { SOIIAOFS } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { MriAn } \\ & \text { COlIADE } \\ & \hline \end{aligned}$	$\begin{gathered} F \\ \text { VAlite } \end{gathered}$	p
NIIF TR RFTOFSSTRN.............	A	35.3167?	4.41453	?.n395	
OFVIATITN ARIVIT PFFPORECITN...	4	A, GR37A	?.17004		n.s.


$\begin{aligned} & \text { VARTARLE } \\ & \text { NR. } \end{aligned}$	MEAN	$\begin{aligned} & \text { cTR. } \\ & \text { nruigitinn } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { OFri. } \\ & \text { rarff. } \end{aligned}$		ranpilen   TV4111F	$\begin{aligned} & \text { PARTIA! } \\ & \text { rnor. rin. } \end{aligned}$	chm तr:	RRND. VAD.
1	1.61598	ก. 06077	0.00770	1.R9R33	0.nna 70			
2	4.96231	n.987na	1,54 1 П2	1.2764 h	1.43 ant	n.0n735 n. 58970	5.77777 7.07844	0.13171 0.08001
3	4.4823n	0.81937	-7.03165	2.53010	-n.9nत1?	-0.37144	2.45574	$0.080 n 1$
7	20745,46094	27RAt, п20nk	-n, 0 nnne	n.nnnก5	-0.39077	-0.18709	1.54nn5	$\begin{aligned} & 0.05581 \\ & 0.03500 n \end{aligned}$
9	2.61538	1.600 .7	-0.10969	1.73460	-0.16094	-0.0An?	1.30 Bl	O.07080
10	$\frac{513.53893}{7.46153}$	742.0274	-n.nnlnn	0.00717	-n.4 6 ¢6t	-0.77538	0.63667	0.21901
11	1,46154	1.71345	0.33195 1.11703	1.14807 0.40577	O. 2.8915	0.14?07	n.67?91	0.51416
4	3.0 nnnn	1.91485				n.74Rrh	$10.94 n 1.5$	n. 74 RK5

TABLE 77 25-50,000
KEY 23
SAMPLE SIZE 13
DEPENDENT VARIABLE IS NOW NO. 6
ANAIYEIC PE VAOIAMIE EOD THE MIf Tinte LINFAR REGORESION



TABLE 79 25－50，000 KEY 23
SAMPLE SIZE 13
COEFFICIENT OF DETERMINATION
0.7366

DEPENDENT VARIABLE IS NOW NO． 4 MULTIPLE CORR．COEFFICIENT
0.8582


	n． 5 ．	$\begin{aligned} & \text { clivinf } \\ & \text { splinofe } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { MF.AN } \\ & \text { SOIIADFS } \end{aligned}$	$\begin{aligned} & \text { Falir. } \\ & \text { valu } \end{aligned}$	p
SIE TM RESRFSEINN．	A	6.11941	0.76403	1．709！	
DEVIATITN ARCIT RFGIDFECITN，	4	3 1／8R4h	0．54711		n．s．
rntal．．．	12	A． 3078 h			


$\begin{aligned} & \text { VRTIARIE } \\ & \text { yo. } \end{aligned}$	－MFAN		$\begin{aligned} & \text { OFR. } \\ & \text { COFF. } \end{aligned}$	eTn．FDeno nf ofr．，rne	rampitpon TVAlif			nañ．VAR． cilm．
1	1．61538	n．96077	－n．4742n	0．R5phn	－0．55h19	－n．p6793	1．557kn	0.18790
2	4.96231	0，8R709	0.67110	0， 51.0330	1．167a5	ก． 50475	n， 1 1777	0．00153
3	$4.4823 n$	0.11937	－n．58134	1.97470	－0．4560t	－n．2？339	n．n677？	0.008915
7	20745，46094	229ah．0390k	－n．nnnot	0.7 nnor	－0．65823	－n． 3126 ？	2． 0 AT53	0.75070
A	2.61538	1.60927	－n．1475h	0.61979	－0．23807	－n．119？n	ก．0442h	0.00534
－	$513.52 \mathrm{Al3}$	742.07746	－n．nnonl	0.70109	－0．00468	－n．nn3 34	0.75174	0.03030
10	2.46157	0.51350	－n．at7ヶ¢	0.57637	－1．17981	－n．5n691	1.49437	0.17987
11	1.46154	1．717，5	ก．アRフnn	ก．74868	1.05755	no．uhnt	n．6n73n	0．n7310
4	$4.769 ? 3$	n．a3？nh						

TABLE $80 \quad$ 25－50，000
KEY 22

| SAMPLE SIZE 13 | COEFFICIENT OF DETERMINATION | 0.9328 |
| :--- | :--- | :--- | :--- |
| DEPENDENT VARIABLE IS NOW NO． 6 | MULTIPLE CORR．COEFFICIENT | 0.9658 |


limear recmesemis


$\begin{aligned} & \text { VADIARLE } \\ & \text { NO. } \end{aligned}$	MEAN	$\begin{gathered} \text { eTn. } \\ \text { nfvintimn } \end{gathered}$	$\begin{gathered} \text { nrr. } \\ \text { rnfr. } \end{gathered}$	$\begin{aligned} & \text { sTn.egont } \\ & \text { nf per. renf. } \end{aligned}$	rnunitra   TVAlitr	$\begin{aligned} & \text { PAnTiAl. } \\ & \text { rnod. PAF. } \end{aligned}$	$\begin{aligned} & \text { ellm nf en. } \\ & \text { annfn } \end{aligned}$	$\begin{aligned} & \text { PPRD. VAD. } \\ & \text { C.IIM. } \end{aligned}$
1	1．6153A	n． 96077	－1．15656	0.47977	－3．41052	－n．7696n	n．nn714	$0.00 n ? 1$
3	4.96231	ก．AA7ก9	n．40ค74	0.30410	1．6400？	0.67407	0.10593	0.01028
4	4.48230	O．A1927	－1．5n919	0.71733	－7．72036	－0．7447f	C．05541	0.00538
7	20745．46096	2？Ant．0iant	0．0nnos	n，กnกา1	3.77159	0．91747	1．4457A	0.14021
ค	2． 15153	t．fn977	－ 0 ．onf 12	0.34 A7A	－2．6n37n	－0．773n5	5.51557	0.53509
9	513.53833	74）．0274	0．$\cap$ nпフ3	0．0nnki	$0.7770 \%$	n． 10567	ก．n¢7na	$0.0 n 651$
17	2.46157	0.51750	0．97369	0．3243？	2．84770	ก． 11895	2．14556	C．2n815
11	1．46154	1.71345	－0．17716	0.17974	－1．76597	－0．53495	0.77717	0.07694
6	4.23077	0.97691						

TABLE 81 25－50，000
KEY 22
SAMPLE SIZE 13
DEPENDENT VARIABLE IS NOW NO． 5

## COEFFICIENT OF DETERMINATION <br> 0.8386

sAIAI．Yくfe ne vadiance fing the willime IINEAD DCROFESINN


TABLE 82 25－50，000 KEY 22
SAMPLE SIZE 13
COEFFICIENT OF DETERMINATION
0.7161

DEPENDENT VARLABLE IS NOW NO． 2
ANAIYCTC TF VARIANIFF TRD THE MIITIIIE
MULTIPLE CORR．COEFFICIENT
0.8462


eniloce nf VADIATINN	n．F．	$\begin{aligned} & \text { Slim nF } \\ & \text { CnlinQfe } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { MKAN } \\ & \text { SOIIADCE } \end{aligned}$	VAl IIF	$p$
DIIF TC PFFTRFSSINN．	9	76．49427	4.58557	1．36nの	
OFVIATINN AROIT QFrinferinm．．．	4	16．54654	$3.676 イ 7$		n．s．


$\begin{gathered} \text { VAOTARLF } \\ \text { NO. } \\ \hline \end{gathered}$	MEAN	$\begin{aligned} & \text { STR. } \\ & \text { nEvigTINN } \end{aligned}$	$\begin{aligned} & \text { DFC. } \\ & \text { rnFFF. } \end{aligned}$	ctn．mpano nf per．erne	$\begin{aligned} & \hline \text { rnuniffn } \\ & \text { Tyallic } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { nnofint } \\ & \text { rnoo, rnk. } \end{aligned}$	$\begin{aligned} & \text { clim nf en. } \\ & \text { annen } \end{aligned}$	nönc．Via． rim．
，	1.61539	0.96077	1．9nA14	7.19914	n．R，${ }^{\text {a }}$	ก．29079	n．50187	0.18723
3	4.96231	ก．89709	－0．70177	1.30723	－n，51，245	－n． 27985	1.04681	0．02043
4	4.48770	ก．81777	？．50n57	3.7 R64 0	n． 7 fnas	n． 75559	9.56757	0.16773
7	20715．4月n94	22RAR．пTank	－0．9nn ${ }^{\text {a }}$	n．0nnot	$\therefore$－ 0.701 .25	－n．7271\％	0.17534	0.0034 ？
9	2．61599	1.60977	ก．97？17	1.59701	0．5457n	n．76977	n．4大9日2	$0.00 n 14$
$\square$	51.3 .53937	71．2．027！6	－n．mnフan	n．nn＞9n	－1．97951	－ 0.671 na	4.45144	0.03 gra
10	2．4K157	0.51350	1.95044	1.49596	1．7514？	0.57744	1．75015	0.03416
11	1．4615\％	1.71718	$1.7 n 671$	n．f4114	1.70903		10.63310	n．20755
？	7.46154	？．06671						

TABLE 83 25－50，000 KEY 21

## SAMPLE SIZE 13

ARIABLE IS NOW NO． 4
COEFFICIENT OF DETERMINATION 0.7350 MULTIPLE CORR．COEFFICIENT 0.8515 ANALYSTS AE VMOIANIC EOO TIF MILTIPLE


SAMPLE SIZE 13
DEPENDENT VARLABLE IS NOW NO. 3

## COEFFICIENT OF DETERMINATION <br> 0.7663 MULTIPLE CORR. COEFFICIENT <br> 0.8754

analyeis df variance mag thf milltidlf I INEAR RFFRFSSTIN

IINEAR RFTRESSITN					
SNITPCF GF VARIATITN	D.F.	$\begin{aligned} & \text { CIMM OF } \\ & \text { SOUARFS } \end{aligned}$	$\begin{aligned} & \text { MFAN } \\ & \text { SOIUARFS } \end{aligned}$	$\begin{gathered} F \\ \text { VALIIF } \end{gathered}$	$p$
DIE TR RESRESSION.	A	37.37218	$4.6715 ?$	1.6396	
	4	11.39706	2.84927		n.s.
TחTAL...	12	48.76974			


$\begin{aligned} & \hline \text { VARIARIF } \\ & \text { NO. } \end{aligned}$	MFAN	$\begin{aligned} & \text { STO. } \\ & \text { nevinitno } \end{aligned}$	$\begin{aligned} & \text { QFG. } \\ & \text { COEFF. } \end{aligned}$	$\begin{aligned} & \text { STD.FRROR } \\ & \text { OF RFF. CRE. } \end{aligned}$	$\begin{aligned} & \hline \text { r.nmpilitan } \\ & \text { t valuf } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { PARTIAI. } \\ & \text { CMPR. PAF. } \end{aligned}$	$\begin{gathered} \text { CIJM NF SO. } \\ \text { AnNED } \end{gathered}$	$\begin{gathered} \text { PROD. VAR. } \\ \text { CIIM. } \end{gathered}$
-	1.61538	0.96077	-0.64701	1.9456 A	-0.33254	-0.16401	12.01923	0.24645
5	4.96231	0.88709	0.27566	1.23321	0.06135	0, 03066	0.48876	0.01001
6	4.48230	0.A1937	-0.98376	2.90895	-0.73818	-0.1667?	6.61686	0.1356A
7	20745.46094	22AR6.03906	0.90006	0.00005	1.181?9	0.50856	6.29706	0.12912
8	2.61538	1.60927	-1.01434	1.41439	-0.71715	-0.33753	1.60672	0.03295
9	513.53833	742.07246	0.00386	0.00248	0.34671	0.17080	6.59559	0.13524
10	2.46153	0.51350	1.490148	1.31521	1.13327	0.49299	3.59303	0.07367
11	1.46154	1.71345	0.17255	0.56751	0.73256	$0.1160 n$	0.15546	0.00319
3	4.30769	2.01596						

TABLE 85 25-50, 000 KEY 21
SAMPLE SIZE 13
DEPENDENT VARLABLE IS NOW NO. 2
$\begin{array}{lll}\text { COEFFICIENT OF DETERMINATION } & 0.7689 \\ \text { MULTIPLE CORR. COE FFICIENT } & 0.8769\end{array}$

SOIJPCF NF VARIATITN			$\begin{array}{r} \text { SIIM NF } \\ \text { SOIIARFS } \\ \hline \end{array}$		$\begin{aligned} & \text { MFAN } \\ & \text { SOIIRRFS } \end{aligned}$	$\begin{aligned} & \text { Fallif } \end{aligned}$	p	
MIF TH RFTRESCInN............... TEVIATION AROIIT REFRESSITN...			$\begin{aligned} & \hline 8 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 46324 \\ & 84462 \end{aligned}$	$\begin{aligned} & 1.18291 \\ & 0.71115 \\ & \hline \end{aligned}$	1.6634	n.s.	
THTAL... 12 12.30786								
VARIARI.F Nn	MEAN	$\begin{aligned} & \text { STN. } \\ & \text { MFYIATION } \end{aligned}$		ятп. nF	$\begin{aligned} & \text { CRMPIITFA } \\ & \text { F. } \quad \text { TVAlIPF } \\ & \hline \end{aligned}$		$\begin{gathered} \text { Clim nF }{ }^{\text {SO }} \\ \text { ADDED } \end{gathered}$	$\begin{aligned} & \text { PRRP. VAR. } \\ & \text { CIM. } \end{aligned}$
1	1.6153A	0.96077	0.59501	0.9	0.61212	0.79266	0.00214	0.00017
5	-4.96231	0.88709	n. 70127	0.6	1.17823	0.49463	16.12391	$0.0913 ?$
6	4.48230	0.A1937	0.63389	1.4	0.43618	0.21308	0.50490	0.04102
7	20745.46094	22886.03906	-0.00300?	0.0	-0.68243	-0.32794	0.97009	0.07882
8	2.61538	1.60927	0.77177	0.7	1.07221	0.47930	0.14517	0.01179
9	513.53837	742.02746	-0.0n155	0.0	-1.25216	-0.53066	1. 13709	0.14926
10	2.46153	0.51350	0.79884	0.6	1.21576	0.51944	0.07319	0.00595
11	1.46154	1.71345	0,73711	n. 2	2.59983	0.79761	4.80678	0.39055
2	5.76923	1.01275						

TABLE 86 25-50,000 KEY 20


SAMPLE SIZE 13
DEPENDENT VARIABLE IS NOW NO. 3
ANALYSIS MF VARTANIF FOD THF MIILTIDLE IINFAD DFFRECSIDAI


$\begin{aligned} & \text { VARThRIE } \\ & \text { Nก. } \end{aligned}$	MFAN	$\begin{aligned} & \text { STNG } \\ & \text { OFVIATINN } \end{aligned}$	$\begin{aligned} & \text { OFR. } \\ & \text { rnff. } \end{aligned}$	$\begin{aligned} & \text { ETN. FRRCR } \\ & \text { OF RER.oCRF. } \end{aligned}$	$\begin{aligned} & \text { TnMoliff } \\ & \text { i vallif } \end{aligned}$	$\begin{aligned} & \text { PRDTKT } \\ & \text { rnor. CRF. } \end{aligned}$	eltu nif Cb. AnOFn	$\begin{aligned} & \text { PRTMP. VAR. } \\ & \text { C.IIM. } \end{aligned}$
1	1.61538	0.96077	-0.11375	0.62290	-0.1926?	-0.09093	0.23558	6.08059
5	4.96231	0.88709	0.46754	0.39490	1.17157	0.50545	1.02577	0.35092
6	4.48230	0.81937	-0.41019	0.93129	-0.44046	-0.21508	6.00404	0.0016
7	20745.46094	22A8t.03906	0.00001	0.00002	0.89540	0.4n86?	O.3219?	0.11013
8 9	2.61538 513.5383	1.60927	-0.21641	0.45281	-0.47793	-0.23742	0.07801	0.02669
9	513.53837	742.02746	n.nn021	0.00079	0.25834	0.12811	0.07690	0.00923
10 11	2.46153 1.46154	0.51350 1.71345	-0.17395 0.00793	0.42105	-0.41314	-0.20?30	n. 06121	0.02094
3	1.46154	1.71345	0.00793	0.1 16A	0.04367	ก.021 13	0.00056	0.00019

TABLE 88 25-50, 000
KEY 20
SAMPLE SIZE 13
DEPENDENT VARIABLE IS NOW NO. 2
ANALYSIE TF VADIANTE ERD The MILLTIPIE INFAD prtidfecinal


$\begin{aligned} & \text { VARIARLF } \\ & \text { Nn. } \end{aligned}$	MEAN	sTn. nFVIATITAN	$\begin{aligned} & \text { OFF. } \\ & \text { CNFFF. } \end{aligned}$	STO.FQRNR TF PEf,	$\begin{aligned} & \text { COMDITED } \\ & \text { i VAlif } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { PADTIAL } \\ & \text { rnRR. rne } \\ & \hline \end{aligned}$	$\begin{gathered} \text { Sim OF }<0 . \\ \text { AnDEn } \end{gathered}$	$\begin{aligned} & \hline \text { PROD. VAR. } \\ & \text { r.IIM. } \end{aligned}$
1	1.61534	0.96077	0.00951	1.47473	0.06748	0.0337?	1.83686	
5	4.96231	0.88709	-0.57005	0,0347 ?	-0.60986	0.03372 -0.29167	1.83686 0.13147	0.10947 0.00784
$\begin{aligned} & 6 \\ & 7 \end{aligned}$	$4.4823 n$ 20745.46094	0.81937 22886.03966	1.41379 -0.00070	?.20495	0.64127	0.30530	4.10901	0.24488
7	$\frac{2 n 745.46094}{2.61538}$	22986.039n6	-0.0n0nn	0.00004	-0.09728	-0.0416n	0.4875 ?	0.02905
9	513.53833	74?.07? ${ }^{1.607}$	-0.03216 -0.00085	1.07204	-0.030n0	-0.0150n	2.2778 s	0.13717
10	2.46153	$0.513{ }^{\text {a }}$	-0.31948	0.0719月	-0.45354	-0.72115	1.18477	0.07060
11	1.46154	1.71745	n.04932	0.43014	0.11465	n.057?	0.24334	0.01450
2	3.53384	1.18250					O.62151	$0.0 n$

TABLE 89 LESS THAN 25, 000 KEY 27


TABLE 90 LESS THAN 25, 000 KEY 27


TOTALL... $12 \quad 36.92308$

$\begin{aligned} & \text { VARIABLE } \\ & \text { NO. } \\ & \hline \end{aligned}$	MEAN	$\begin{aligned} & \text { STO. } \\ & \text { DEVIATION } \end{aligned}$	$\begin{aligned} & \text { REG. } \\ & \text { COEFF. } \end{aligned}$	$\begin{aligned} & \text { STO.ERROR } \\ & \text { OF REG.COE. } \end{aligned}$	$\begin{aligned} & \text { COMPUTEO } \\ & \text { I VALUE } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { PARTIAL } \\ & \text { CORR. COE. } \end{aligned}$	$\begin{aligned} & \text { SUM OF SQ. } \\ & \text { AOOED } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { PRUP. VAR. } \\ & \text { CUM. } \end{aligned}$
	1.30769	C. 63043	$0.8067{ }^{\circ}$	0.91428	0.98241	0.40366	3.89081	0.10538
2	4.76307	0.73297	0.94884	0.95851	0.98991	0.44360	0.32538	0.00881
3	4.03384	1.42110	U. 80252	0.40307	1.99100	0.70552	8.80349	0.23843
7	13647.15234	25361.06250	0.00001	0.00003	0.27715	0.13727	0.13808	0.00374
8	3.15385	1.46322	-0.36081	0.40957	-0.98094	-0.40310	2.59971	0.07041
9	784.23071	2178.22437	-0.00017	0.00030	-0.59133	-0.28353	9.67054	0.26191
10	2.24307	1.1895	-0. 77455	0.47072	-1.64545	-0.0.63534	1.54418	0.04182
11	2.15385	1.67562	-0.75056	0.45305	-1.65666	-0.63791	4.04930	0.10967
5	2.92308	1.75412						

TABLE 91 LESS THAN 25, 000 KEY 27


$\begin{aligned} & \text { VARIABLE } \\ & \text { NO. } \end{aligned}$	MEAN	$\begin{aligned} & \text { STO. } \\ & \text { OEVIATION } \end{aligned}$	REG. COEFF.	$\begin{aligned} & \text { STD.ERROR } \\ & \text { OF REG.COE. } \end{aligned}$	CTOYPUTEO   $t$ value	$\begin{aligned} & \text { PARTIAL } \\ & \text { CORR. COE. } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { SUM OF SO. } \\ & \text { AODEO } \end{aligned}$	$\begin{aligned} & \text { PROP. VAR. } \\ & \text { EUY. } \end{aligned}$
1	1.30769	0.63043	0.17776	0.34286	$\overline{0} .51847$	0.25096	3.48512	0.12352
2	4.76307	0.73297	-0.73879	0.35945	-2.05536	-0.71671	2.40316	0. 68489
3	4.03384	1.42110	0.92966	0.15116	$6.15 \mathrm{J33}$	0.95099	8.58461	0.30679
7	13647.15234	25361.06250	0.00000	0.00001	0.16118	0.08034	1.47892	0.05224
8	3.15385	1.4632 ?	0.33049	0.15359	2.15171	0.73248	0.19853	0.00701
9	784.23071	2178.22437	-C. 00062	0.00011	-5.57704	-0.94135	11.06975	0.39105
10	2.24307	1.18952	-0.02980	0.17652	-0.16884	-0.088413	0.05753	3.00203
11	2.15385	1.67562	0.11808	0.16990	0.69501	0.32927	0.10023	0.00354
4	3.23077	1.53590						


SAMPLE SIZE 13   DEPENDENT VARIABLE IS NOW NO. 6					COEFFICIENT OF DETERMINATION MULTIPLE CORR. COEFFICIENT			$\begin{aligned} & 0.8402 \\ & 0.9166 \end{aligned}$
añalysis of várlance fotr The multiple   linear regression								
SOURCE CF VAKTATIOR			SUM OFSOUARES		$\begin{aligned} & \text { MEAN } \\ & \text { SQUARES } \end{aligned}$	VALUE	0	
OUE TU KEGRESSTON OEVIATIUN ABOUT REGRFSSION...			31.02139		3.87767	2.6282		
			45	90169	1.47542		n.s.	
TOTAL... 12 36.92308								
VARTABLE NO.	MEAN	STO.	$\begin{aligned} & \text { Tr. } \\ & \text { CIEFF。 } \end{aligned}$	5TU. ERROR DF REG.COE	COMPOTED   $t$ value	$\begin{aligned} & \text { PARTIAL } \\ & \text { CORR. COE. } \end{aligned}$	SUT UF SO.AOOEO	PRDP. VAR.
		OEVIATION						CUM.
1	1.30769	0.63043	0.80676	0.914280 .98241		$\begin{aligned} & 0.40366 \\ & 0.44360 \end{aligned}$	3.89081	0.10538
2	4.76307	0.73297	0.94884	$0.95851 \quad 0.98991$			0.32538	0.00881
3	4.05384	1.42110		0.403071 .99100		$0.7055 \%$	8.80349	$0.2 \overline{3} \overline{8} 4 \overline{3}$
7	13647.15234	25361.06250	0.00001	0.000030 .27715		0.13727	0.13808	0.00374
8	3.15385	1.46322	-0.36081	$0.40957-0.88094$		-0.40310	2.59971	0.07041
9	784.23071	2178.22437		$0.00030-0.59133$		-0.28353	9.67054	0.26191
10	2.24307	1.1895?	-C.00017	$\begin{aligned} & 0.47072 \\ & 0.45305 \\ & \hline \end{aligned}$	-1.64545	-0.63534	1.54418	0.04182
11	2.15385	1.67562	-0.75056		$0.45305-1.65666$	-0.63791	4.04930	0.10967
6	2,92308	1.75412						

TABLE 93 LESS THAN 25, 000 KEY 26
SAMPLE SIZE 13
COEFFICIENT OF DETERMINATION
0.9707

DEPENDENT VARIABLE IS NOW NO. 5
MULTIPLE CORR. COE FFICIENT
0.9852
analysis of variance for the multrple

SOURCE OF VAKTATIJN	D.F.	$\begin{aligned} & \text { SUA UF } \\ & \text { SOUARES } \end{aligned}$	$\begin{aligned} & \text { REAN } \\ & \text { SOUARES } \end{aligned}$	value	p
DUE TO REGRESSION.	8	27.47174	3.43472	16.5331	
OEVIATION ABOUT REGRESSION...	4	0.82996	0.20788		$<.01$
rotill...	12	28.30769			


$\begin{aligned} & \hline \text { VARTABLE } \\ & \text { NO. } \end{aligned}$	- MEÀN	$\begin{aligned} & \text { STG. } \\ & \text { OEVIATION } \end{aligned}$	$\begin{aligned} & \text { KEG. } \\ & \text { COEFF. } \end{aligned}$	$\begin{aligned} & \text { STO.ERROR } \\ & \text { OF REG.COE. } \end{aligned}$	COMPUTFD   $T$ value	$\begin{aligned} & \text { PARTIEL } \\ & \text { COPR. COE. } \end{aligned}$	$\begin{aligned} & \text { SUR OF } 50 . \\ & \text { ADOFO } \end{aligned}$	$\begin{aligned} & \text { PRUP. VAR. } \\ & \text { CUM. } \end{aligned}$
1	1.30769	0.63043	0.17776	0.34286	0.51044	0.25046	5.48512	प.12312
2	4.76307	0.73297	-0.73879	0.35945	-2.05536	-0.71671	2.40316	0.08489
3	4.03384	1.42110	0.92966	0.15116	6.15033	0.75097	\%.6त451	0.30517
7	13647.15234	25361.06250	0.00000	0.00001	0.16118	0.08034	1.47892	0.05224
8	3.15385	1.46322	0.33049	0.15359	2.15171	0. 7324 ¢f	0.19853	0.0070t
9	784.2,3071	2178.22437	-0.00062	0.00011	-5.57974	-0.94135	11.06975	0.39105
10	2.24307	1.18952	-0.02980	0.17652	-0.16884	-0.08413	0.05753	3.000203
11	2.15385	1.67562	0.11808	0.16990	0.69501	0.32827	0.10023	0.00354

TABLE 94 LESS THAN 25, 000 KEY 26
SAMPLESIZE $13 \quad$ COEFFICIENT OF DETERMINATION 0.9902
DEPENDENT VARIABLE IS NOW NO. 4 analysis of variance for the multiple LINEAR REGRESSION

LINEAR REGRESSION					
SOUSCE OF VÁ?TATION	D.F.	$\begin{aligned} & \text { SUM UF } \\ & \text { SOUARES } \end{aligned}$	$\begin{aligned} & \text { MERN } \\ & \text { SOUARES } \end{aligned}$	value	p
OUE TO REGQESSION.	A	30.92537	3.86557	50.6301	
OEVIATION ABOUT REGRESSION...	4	0.30540	0.07635		$<.001$
TOTAL...	12	31.23077			


$\begin{aligned} & \text { VARIABLE } \\ & \text { NO. } \end{aligned}$	MEAN	$\begin{aligned} & \text { STO. } \\ & \text { DEVIATION } \end{aligned}$	$\begin{aligned} & \text { REG. } \\ & \text { COEFF. } \end{aligned}$	$\begin{aligned} & \text { STO.ERRUR } \\ & \text { OF REG.CNE. } \end{aligned}$	$\begin{aligned} & \text { COMPUİED } \\ & \text { TVALUE } \end{aligned}$	$\begin{aligned} & \text { PARTIAL } \\ & \text { COPR. COE. } \end{aligned}$	$\begin{aligned} & \text { SUM OF SQ. } \\ & \text { ADOEN } \end{aligned}$	$\begin{aligned} & \text { PRUCR. VAR. } \\ & \text { CUY. } \end{aligned}$
1	1.30769	0.63043	-0.07856	0.20798	-0.37771	-0.18561	1.69851	0.05439
2	4.76307	0.73297	-0.40728	0.21804	-1.86786	-0.68263	2.04805	0.06558
3	4.05384	1.42210	0.97060	0.041 .67	10.58537	0.98262	10.78647	0.35178
7	13647.15234	25361.06250	0.00000	0.00001	0.84193	0.38806	0.20583	0.00659
8	3.15385	1.4632?	0.0970]	0.09317	1.04200	0.46212	1.80293	0.05773
9	784.23071	2178.22437	-C. 00064	0.00007	-9.59797	-0.97895	13.98553	0.44781
10	2.24307	1.18952	-0.13506	0.10708	-1.26132	-0.5335	0.18890	3.000605
11	2.15385	1.67562	$0.035 \% 0$	0.10306	0.34830	0.17161	0.00926	0.00030

TABLE 95 LESS THAN 25,000 KEY 25

| SAMPLESIZE 13 |  | COEFFICIENT OF DETERMINATION | 0.9937 |
| :--- | :--- | :--- | :--- | :--- |
| DEPENDENT VARIABLE IS NOW NO. 6 | . | MULTIPLE CORR. COEFFICIENT | 0.9968 |

DEPENDENT VARIABLE IS NOW NO. 6
ANALYSIS OF VAPIANCF FOR THE MULITPLE


SOIJRCE GF VARIATITON	D.F.	$\begin{aligned} & \text { SUM Tf } \\ & \text { SQUARES } \end{aligned}$	$\begin{aligned} & \text { MEAN } \\ & \text { SOUARES } \\ & \hline \end{aligned}$	value	p
DUE TD RFGPESSION............	8	2 E .89365	3.61171	78.8201	
DEVIATION ABOUT REGRESSION...	4	0.18329	0.04582		$<.001$

TOTAL... $12 \quad 29.07693$

$\begin{aligned} & \text { VARIABLE } \\ & \text { NO. } \end{aligned}$	MEAN	$\begin{aligned} & \text { STA. } \\ & \text { MEVIATICN } \\ & \hline \end{aligned}$	$\begin{gathered} \text { REG. } \\ \text { COEFF, } \end{gathered}$	STD.ERROR OF REG.CDF.	COMPUTED T Value	$\begin{aligned} & \text { PARTIAL } \\ & \text { COPR. COE. } \end{aligned}$	$\begin{gathered} \text { SUM OF SQ. } \\ \text { AODED } \end{gathered}$	$\begin{aligned} & \text { PROP. VAR• } \\ & \text { CUM. } \end{aligned}$
1	1.30769	0.63043	0.32822	0.16112	2.03708	0.71368	2.51241	0.08641
2	4.76307	0.73297	-1.19087	0.16892	-7.05002	-0.96206	3.59812	0.12374
3	4.03384	1.42110	0.76280	0.07103	13.55412	0.98929	10.89900	0.37483
7	13647.15234	25361.06250	-0.00000	0.00000	-1.04235	-0,46228	0.25984	0.00894
8	3.15385	1.46322	0.01797	0.07219	0.27670	0.13709	2.59870	0.08937
9	784.23071	2178.22437	$-0.00062$	0.06005	-11.81702	-0.98599	8.71911	0.29986
10	2.24307	'. 18952	0.13536	0.08295	1.63157	0.63226	0.01581	0.00054
11	2.15385	$\therefore .7562$	0.20113	0.07984	2.51709	0.78327	0.29079	0.01000



$\begin{aligned} & \text { VARIABLF } \\ & \text { NO. } \end{aligned}$	MEAN	$\begin{aligned} & \text { STO. } \\ & \text { OEVIATION } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { REG. } \\ & \text { COEFF. } \end{aligned}$	$\begin{aligned} & \text { STO. ERROR } \\ & \text { OF REG.COE. } \end{aligned}$	COMPUTEO   t value	$\begin{aligned} & \text { PARTIAL } \\ & \text { CORR. COE. } \end{aligned}$	$\begin{gathered} \text { SUM OF SO. } \\ \text { AOOEO } \\ \hline \end{gathered}$	$\begin{gathered} \text { FRDP:. VAR. } \\ \text { CUM. } \end{gathered}$
1	1.30769	0.63043	0.91316	1.19501	0.76415	0.35691	4.92432	0.15768
2	4.76307	0.73297	-0.14943	1.25282	-0.11927	-0.05953	3.40049	0.10888
3	4.03384	1.42110	-0.43478	0.52684	-0.82526	-0.38143	0.75348	0.02413
7	13647.15234	25361.06250	-0.00001	0.00003	-0.29223	-0.14458	0.00044	0.00001
8	3.15385	1.46322	0.09673	0.53533	0.18069	0.08998	0.91996	8.02446
9	784.23071	2178.22437	-0.00053	0.00039	-1.36583	-0.56395	6.48987	0.20780
10	2.24307	1. 18952	-0.24180	0.61526	-0.39301	-0.19282	2.15001	0.06884
11	2.15385	1.67562	0.59090	$0.5 ¢ 217$	0.99786	0.44645	2.50984	C.08036
5	3.53846	1.61325						
			TABLE 97 L		LESS THAN 25,000 KEY 25			
SAMPLE	E SIZE	13			COEFFICIENT OF DETERMINATION			0.5455
DEPEND	DENT VARIA	BLE IS NOW NO	4		MULTIPLE CORR. COEFFICIENT			0.7386

ANALYSIS OF VARIANCE FOR THE MULTIPLE
LINEAR FEGRESSION

SOURCE OF VARIATION	D.F.	SUM OF SOUARES	$\begin{aligned} & \text { MEAN } \\ & \text { SOUARES } \end{aligned}$		p
OUE TO REGRESSION....	8	18.04338	2.25542	0.6001	
DEVIATION ABMUT REGRESSION...	4	15.03355	3.75839		n.s.
TOTAL...	12	33.07693			



TABLE 98 LESS THAN 25, 000 KEY 24

SAMPLE SIZE 13 DEPENDENT VARIAHLE IS NOW	O. 6		COEFFICIENT OF DETERMINATION MULTIPLE CORR. COEFFICIENT			$\begin{aligned} & 0.7196 \\ & 0.8483 \end{aligned}$
ANALYSTS OF VARIANCE FUK THE RUCLTIPLT   LINEAR REGRESSION						
SOURCE UF VARTATTOK	D.F.	$\begin{aligned} & \text { SUH UF } \\ & \text { SOUARES } \end{aligned}$	$\begin{aligned} & \text { MEAN } \\ & \text { SOUARES } \end{aligned}$	VALUE	p	
OUE TO REGRESSION..	8	23.80156	2.97519	1.2831		
OEVIATION ABOUT REGRESSION...	4	9.27538	2.31884		n.s.	
!JTAL...	12	33.07643				


VARTAELE NO.	E MEAN	STO.	$\begin{aligned} & \text { REG. } \\ & \text { COEFF. } \end{aligned}$	$\begin{aligned} & \text { STU.ERRUR } \\ & \text { OF REC.COE. } \end{aligned}$	CURPUTED T value	$\begin{aligned} & \text { PARTIAL } \\ & \text { CORR. COE. } \end{aligned}$	$\begin{aligned} & \text { SUF UF SO. } \\ & \text { AOOEO } \end{aligned}$	$\begin{aligned} & \text { PRUP. VAR. } \\ & \text { CUM. } \end{aligned}$
1	1.30769	0.63043	1.11835	L. 14614	0.97571	0.43846	4.31886	0.13057
2	$4.763 C 7$	0.73297	-0.02427	1.20163	-0.02020	-0.01010	4.02746	0.12176
3	4.03384	1.42110	-0.76927	0.50532	-1.52236	-0.60568	3.74577	0.11324
7	13647.15234	2536: 06250	-0.00001	0.00003	-0.46447	-0.22621	0.00943	0.00029
8	3.15385	1.46322	-0.01173	0.51346	-0.02285	-0.01142	1.37656	0.04162
9	784.23071	2178.22437	-0.00047	0.00037	-1.25631	-0.53192	5.01636	0.15166
10	2.24307	1.18952	-0.28394	0.59012	-0.48116	-0.23390	2.60999	0.07891
11	2.15385	1.67562	0.61255	0.56797	1.07849	0.47464	2.69714	0.08154
6	3.61538	1.66024						

## SAMPLE SIZE

13
DEPENDENT VARIABLE IS NOW NO. 4
analysis of variance for the multiple
LINEAR REGRESSION

SOURLE tIF VARTATION	D.F.	SUn UF	HEAN	-	
OUE TO REGRESSION.		SOUARES	SOUARES	VALUE	$p$
OEvIATION ABOUT REGRESSION....	4	23.53787	$\begin{aligned} & 4.71161 \\ & 5.88447 \end{aligned}$	0.8007	n.s.


VARIABLE	NEAN	$\begin{aligned} & \text { STO. } \\ & \text { OEVIATION } \end{aligned}$	$\begin{aligned} & \text { REG. } \\ & \text { COEFF. } \end{aligned}$	STD.ERROR OF REG. COE	COYPUTEO t value	$\begin{aligned} & \text { PARTIAL } \\ & \text { CORR. COE. } \end{aligned}$		UP:
1	1.30769	0.63043	2.01534	1.82588	1. 10376	0.48318	2.08561	cum.
2	4.76307	0.73297	-0.25579	1.91421	-0.13362	-0.06666	3.25668	0.05319
7	13647.03384	21.42110	0.71950	0.80497	0.89382	0.40802	14.258486	0.05319
7	13647.15234	25361.06250	-0.00005	0.00005	-1.09580	-0.48051	10.14071	0.16561
9	3.15385	1.46322	-0.70086	0.81795	-0.85586	-0.39381	0.45585	0.00744
	$\frac{784.23071}{2.24307}$	2178.22437	C. 00063	0.00059	1.07452	0.47329	2.17268	0.03548
10	2.24307 2.15385	1.18952 1.67562	-0.74987 -0.70612	0.94007 0.90479	-0.79768 -0.78043	-0.37046	1.51260	3.02470
4	3.45154	2.25889				-0.363.2	3.58406	0.05853

TABLE 100 LESS THAN 25, 000 KEY 24


TABLE 101 LESS THAN 25, 000 KEY 23
SAMPLE SIZE 13
DEPENDENT VARIABLE IS NOW NO. 6
analysis of variance for the multiple
Linear regression


TABLE 102 LESS THAN 25, 000 KEY 23


TABLE 103 LESS THAN 25, 000 KEY 23
SAMPLE SIZE 13
DEPENDENT VARIABLE IS NOW NO. 4
ANALYSIS OF VARIANCE FOR THE MULTIPLE LINEAR REGRESSIUN


TABLE 104 L:TSS THAN 25, 000 KEY 22
GAMP¥ESIZE 13
DEPENDENT VARIABLE IS NOW NO. 6
ANALYSTS OF VARTANCE FITR THE MULTIPLE
LINFAR REGRESSION


TABLE 105 LESS THAN 25, 000 KEY 22
SAMPLE SIZE 13
DEPENDENT VARIABLE IS NOW NO. 5
analysis of variance for the multiple LINEAR REGRESSION


TABLE 106 LESS THAN 25, 000 KEY 22


TABLE 108 LESS THAN 25, 000 KEY 21



TABLE 113 URBAN
KEY 1
SAMPLE SIZE $31 \quad$ COEFFICIENT OF DETERMIPIATION 0.7400
DEPENDENT VARIABLE IS NOW NO. 24
MULTIPLE CORR. COEFFICIENT
0.8607

ANALYSIS OF VARIANCE FRR THE MULTIPLF

LINEAP PFGPESSION					
SHURCE MF VARTATTEN	H.F.	SUR AF	MERN	VALUF	
		SOIIARES	SCUARES	VAllif	p
WUE TO REGRESSTCN.	8	¢2.43433	11.55492	7.8617	
OEVIATION AROIT REGRESSION...	22	32.33487	1.46977		$<.01$


$\begin{aligned} & \text { VARTARLE } \\ & \text { Nก. } \end{aligned}$	- HEM	$\begin{aligned} & \text { STh. } \\ & \text { DFVIATION } \end{aligned}$	$\begin{aligned} & \text { REG. } \\ & \text { COEFF. } \end{aligned}$	$\begin{aligned} & \text { STO. FRROR } \\ & \text { OF RFG. PNE: } \end{aligned}$	CTMPTITET T Value	$\begin{aligned} & \text { PARTYAL } \\ & \text { CHRR. CHF. } \end{aligned}$	$\begin{aligned} & \text { SIIM BF } 50 . \\ & \text { AnNFn } \end{aligned}$	$\begin{aligned} & \text { PROTV. VAR. } \\ & \text { r.lim. } \end{aligned}$
	1.5 5613	0.8171	-0.36564	0.29567	-1.23581	-0.25497	0.06835	0.00055
9	5.12076	1.74700	-0.02042	0.18894	-0.10808	-0.02304	7.0708 n	0.05667
10	4.15451	1.60972	0.11908	0.24105	0.148	0.17475	\%.79171	0.07145
26	51526.739?8	71016.43750	0.00000	0.00000	0.86347	0.18105	8.67893	0.06956
27	2.67742	1.75854	0.54376	0.16959	3.20634	0.56434	52.76401	0.42304
28	1033.03223	4468.23828	-0.00003	0.00005	-0.63941	-0.13507	1.12507	0.00902
29	2.31645	0.95737	0.46681	0.38537	1.21131	0.25005	8.19531	0.06568
30	1.58064	2.12562	0.27724	0.14046	1.97385	0.38788	5.72 .635	0.04589
24	2.67742	2.03940						



TABLE 115 URBAN KEY 1
SAMPLE SIZE 31
DEPENDENT VARIABLE IS NOW NO. 22
COEFFICIENT OF DETERMINATION
0.6967

MULTIPLE CORR. COEFFICIENT
0.8347



TABLE 118 URBAN KEY 1
SAMPLE SIZE 31 COEFFICIENT OF DETERMINATION 0. 8369
DEPENDENT VARIABLE IS NOW NO. 20
MULTIPLE CORR. COEFFICIENT
0.9148


TABLE 119 URBAN KEY 1

SAMPLE SIZE 31 DFPERNDENT VARIABLE IS NOW	O. 1		COEFFICIENT OF DETERMINATIONMULTIPLE CORR. COEFFICIENT			$\begin{aligned} & 0.8373 \\ & 0.9151 \end{aligned}$
ANALYSTS NF VAR IANC.E FRR THF MULTTPLFLINEAR REG.RFSEION						
SUTIRTE OF VARTATINN	W.F.	$\begin{aligned} & \text { SIIM UF } \\ & \text { SnIIARFS } \end{aligned}$	$\begin{aligned} & \text { MFINS } \\ & \text { SOIIARFS } \end{aligned}$	Vallif	0	
DUF TO REGRESSITNN......	8	109.1765	\$5.64756	14.1549	p	
OFVIATICI! ARTIIT REGRESCINN...	27	71.21069	0.96412	-	$<.001$	
Thral...	30	130.38721				


$\qquad$	MFAN	$\begin{aligned} & \text { ETK: } \\ & \text { OFVIATION } \end{aligned}$	$\begin{aligned} & \text { RFG. } \\ & \text { r.nFFF. } \end{aligned}$		$\begin{aligned} & \text { ChMOTITFI } \\ & \text { T VALIF } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { DRRYTHT } \\ & \text { CORQ. COF. } \end{aligned}$	$\begin{aligned} & \text { Cum nif } 53 . \\ & \text { annfn } \end{aligned}$	$\begin{aligned} & \text { PRTIT. VAR. } \\ & \text { CUM. } \end{aligned}$
	1.51613	0.81121	-0.02528	0.23047	-0.1n558	-0.02? 5 n	$6.53 \mathrm{CR9}$	0.05079
9	5.12096	1.74700	-0.24820	$0.153 n 3$	-1.62192	-0.37681	2.23011	0.01710
10	4.15451	1.60972	0.44372	6.15723	2.67022	0.43581	14.1642?	0.07195
26	51526.73829	71016.43750	-0.0000n	0.00700	-0.03966	-0.00845	7.70225	0.05907
27	2.67742	1.75854	0.99102	0.13775	6.48706		75.71797	N. ${ }^{\text {arent }}$
28	1033.03223	4468.73828	-0.00007	$0.07 n 04$	-1.59750	-n.32241	1.83977	0.01411
29	2.31645	0.95737	-0.27707	0.31212	-0.RR760	-0.14595	0.02408	त.n00
30	1.58064	2.12562	0.25835	0.11376	2.27106	0.43580	4.97772	0.03814



TABLE 121 URBAN KEY 1
SAMPLE SIZE $31 \quad$ COEFFICIENT OF DETERMINATION 0.2163

DEPENDENT VARIABLE IS NOW NO. 17 ANALYCIS OF VARIANCE FRR THF MULTIPI.F LINEAR PEGRESSION


TABLE 122 URBAN KEY 1


TABLE 123 URBAN KEY 1


TABLE 124 URBAN KEY 1
SAMPLE SIZE 3
DEPENDENT VARIABLE IS NOW NO. 14
COEFFICIENT OF DETERMINATION 0.3169
analysis mi varianif fit the miltiple LINEAR PEr.pESEIDM

SOTPCE MF VARIATION	h.F.	Cu4 ${ }^{\text {OF }}$	$\begin{aligned} & \text { MFIN } \\ & \text { SOIIARFS } \end{aligned}$	VILile	p
		Soluades			
OUE TO RFERRESSINN.............	${ }^{\circ}$	15.04924	1.88116	1.2760	
OEVIATION ARMIIT REGRESCITN...	22	32.43463	1.47430		n.s.
THTAL...	30	47.48389			


$\begin{aligned} & \text { VARIARLF } \\ & \text { NO. } \\ & \hline \end{aligned}$	MEAN	$\begin{gathered} \text { STM. }_{\text {OFVIATINN }} \\ \hline \end{gathered}$	$\begin{aligned} & \text { RFG. } \\ & \text { CNFFF. } \end{aligned}$	STO.FRROR OF DFR, RMF.	COMPITFO r Valilf	$\begin{aligned} & \text { PADT!AL } \\ & \text { rnPO: PAF, } \end{aligned}$		$\begin{gathered} \text { PROD. VAR. } \\ \text { rism. } \end{gathered}$
1	1.51613	0.81121	0.13366	0.29612	0.45137	n.09579	0.0 กnal	$0.0000{ }^{\circ}$
9	5.17096	1.74700	0,43845	0.18923	2.31700	0.44?90	9,44037	ก.19881
10	4.15451	1.60922	-n.17226	0.24142	-0.71351	-0.15034	0.07012	7.00148
26	51526.7382 A	71016.43750	-0.0000n	n.onono	-0.05611	-0.0119	0.01655	0.00035
27	2.67742	1.75854	-0.1115	0.16985	-0.65649	-0.13961	1.13209	0.02384
28	1033.03223	4468.23828	0.00008	0.00005	1.47365	0.29044	2.06347	0.04346
29	2.31645	0.95737	0.43588	0.38597	1.12932	0.23408	0.84647	0.01783
30	1.58064	2.12562	-0.14095	0.14067	-1.00195	-0.20890	1.48008	0.03117
14	4.87097	1.25809						

TABLE 125 URBAN KEY 1

## SAMPLE SIZE 31

DEPENDENT VARLABLE IS NOW NO. 13
analysis if variance fir thf multiole LINFAR RFTRFSSION

SOURCE TF VARTATITN	D.F.	SU4 OF	MFIN	F	
		Spluates	Sollares	valile	$p$
  DEviatinn andit derirficinn...	${ }_{2}^{8}$	$\begin{aligned} & 18.66136 \\ & 49.20973 \end{aligned}$	2.33267	1.0429	
YTPAL...	30	67.87109	2.2368		n.s.


$\begin{aligned} & \text { VARTABLE } \\ & \text { ND. } \end{aligned}$	MFAN	$\begin{aligned} & \text { Singing } \\ & \text { MFVIATINN } \end{aligned}$	$\begin{aligned} & \text { QFF.. } \\ & \text { CMFFF. } \end{aligned}$	CTH. FRRTR nF QFfirne.	COMDITFA   T Valiff	$\begin{aligned} & \text { RADTIAL } \\ & \text { rBPa. rnE. } \end{aligned}$	$\begin{gathered} \text { ciJm nF } \\ \substack{\text { ADOFn }} \\ \hline \end{gathered}$	
1	1.51613	0.81121	0.3 8878	0.36475	1.065 सी	n.2216n	0.A2339	0.01213
9	5.12096	$1.147 n 0$	0.44900	0.23379	1.97633	0.37990	9.16848	0.13509
In	4.15451	T.60922	-0.21136	0.29737	0.71078	-0.14983	0.28739	0.06425
26	51526.73828	71016.63750	0.00000	0.00000	0.0S746	0.01478	0.2094R	0.00441
27	2.67742	1. 25854	-6.25770	0.26971	-1.27956	-n. 26719	4.65017	0.06851
28	1033.03223	4468.23828	0.00006	0.00007	0.97937	0.20439	1.35829	0.02001
29	2.31645	0.75737	0.44148	0.47541	0.74125	7. 19675	1.24872	0.01840
30	1.58064	2.12562	-0.10525	0.17327	-0.60742	-0.12843	0.82529	0.01216
13	4.7354 ${ }^{\text {\% }}$	1.50412						

TABLE 126 URBAN KEY 1


TABLE 128 URBAN KEY 1

SAMPLE SIZE 31DEPENDENT VARIABLE IS NOW NO.			8		COEFFICIENT OF DETERMINATION MULTIPLECORR. COEFFICIENT			$\begin{aligned} & 0.3494 \\ & 0.5911 \end{aligned}$
ANALYSTS OF VARIANEE FIR THE RULTIPLELINEAR REGRESSION								
SUURCE IF VARIATIAN			nof. 5	$\begin{aligned} & \text { SUN OF } \\ & \text { SOUARES } \end{aligned}$	$\begin{aligned} & \text { REAN } \\ & \text { SOIJARES } \end{aligned}$	VALUF	p	
$\begin{aligned} & \text { DUE TORI } \\ & \text { DEVIATIOI } \end{aligned}$	$\begin{aligned} & \text { REGRESSTON... } \\ & \text { ON ABOUT REGR } \end{aligned}$	-OBESIOM.... 22	826	16701	$\begin{aligned} & 7.52088 \\ & 5.09212 \end{aligned}$	1.4770	n.s.	
Tutal... 30 If2.19356								
$\begin{aligned} & \text { Vartante } \\ & \text { Nח. } \end{aligned}$	- Matan	$\begin{aligned} & \text { STD. } \\ & \text { OEVIATION } \end{aligned}$	$\begin{aligned} & \text { RET:. } \\ & \text { CNEFF. } \end{aligned}$	$\begin{aligned} & \text { STU.FRROR } \\ & \text { OF RFG.COE. } \end{aligned}$	$\begin{aligned} & \text { COMPUTED } \\ & \text { I VALUF } \end{aligned}$	$\begin{aligned} & \text { PAFTTAL } \\ & \text { CDRR. CDE. } \end{aligned}$	$\begin{aligned} & \text { SUATOF STs. } \\ & \text { ADDED } \end{aligned}$	$\begin{aligned} & \text { PRUP. VAR: } \\ & \text { CUM. } \end{aligned}$
5	1.51515	O.61L2L	-0.08658	0.55 di34	-0.15835	-0.03352	0.33734	6.001\%
9	5.12096	1.74700	0.18949	0.35168	0.53882	0.11413	0.59784	0.00347
10	4.15451	1.60922	-0.10575	प.44867	-0.23560	-1.05018	U.3585	0.00235
26	51526.73828	71016.43750	-0.00000	0.00001	-0.01172	-0.00250	9.48826	0.05510
27	2.67742	1.75854	0.76673	U.31566	2.49230	0.46925	31.13023	0.18079
28	1033.03223	4468.23828	-0.00001	0.D0010	-0.09160	-0.01952	0.48562	0.00282
29	2.35695	0.95737	0.52535	0.71731	0.73238	0.15428	0.07867	$0.000{ }^{0}$
30	1.58064	2.12562	-0.48674	0.26144	-1.86180	-0.36894	17.65071	0.10251
1	Re83871	2.3457						

SAMPLE SIZE 31
DEPENDENT VARIABLE IS NOW NO. 7
ANALYSIS OF VARIANCE FBR THE mHtIFLE LINEAR REGRESSION


TABLE 130 URBAN KEY 1
SAMPLE SIZE 31
DEPENDENT VARIABLE IS NOW NO. 6
analysis of variance fir the milltiple LINEAR REGPESSION

Studice Mif VArIatron	D.F.	sum di	MFAN	F	
		SOUARES	SOIIARES	VALUF	p
	8	73.22815	9.15352	1.8525	
DEVIATIDN ARDIST RFGRESSITN...	22	108.70734	4.94124		n. 5.


$\begin{aligned} & \text { VARIAALE } \\ & \text { NO. } \end{aligned}$	MEAN		$\begin{aligned} & \text { PEG. } \\ & \text { CDEFF. } \end{aligned}$	STB.ERROR DF RER.C.OF.	COMPITTEN   t value	$\begin{aligned} & \text { PARTTAL } \\ & \text { PORR. CDE. } \end{aligned}$	sim of ${ }^{2}$	PRDP. VAR.
?	1.51613	O.A1121	0.00696	0.54213	0.01285	0.00274	3.13 月10	0.01725
9	5.12096	1.74700	0.14439	0.34643	0.41678	0.08851	1.39006	0.00765
10	4.15451	1.60922	-0.14218	0.44198	-0.32168	0.06842	2.08714	0.01148
26	51526.73828	71016.43750	0.00001	0.00001	1.76651	n. 35246	37.30714	0.20506
27	2.67742	1.75854	0.45416	0.31095	1.46056	0.29731	25.35504	0.13114
28	1033.03223	4468.23828	-0.00004	0.00010	-0.39935	-0.08484	1.85527	0.01020
29 30	2.31645 1.58064 2.25806	0.95737	-0.60136	0.70860	0.85106	0.17853	2.68524	0.01416
30	1.58064	$\frac{2.12562}{2.46262}$	-0.11022	0.25754	-0.42797	-0.09087	0.90503	0.00497

TABLE 131 URBAN KEY 1

## SAMPLE SIZE 31

DEPENDENT VARLABLE IS NOW NO. 5
ANALYSTS OF VARIANCE FTR THE MULTTPLE

SOLLREE MFTERTAMION	D.F.	$\begin{aligned} & \text { SUM OF } \\ & \text { SOIIARES } \end{aligned}$	$\begin{aligned} & \text { पEGN } \\ & \text { SOIIARES } \end{aligned}$	VALIIF	0
UTEE YG REETRFSSTON.....	8	207.3694?	75.92117	7.2644	$p$
DEVIATION AROUT REGRESSION...	27	78.50168	3.56826		$<.01$
TOTAL...	30	285.87109			


$\begin{aligned} & \text { Vakrable } \\ & \text { Nח. } \end{aligned}$	- HFAN	neviation	$\begin{aligned} & \text { REG. } \\ & \text { COEF. } \end{aligned}$	STO. FRRTR HF RFS.CHE	COMPTMES T Valiff		$\begin{aligned} & \text { SIM nF SO. } \\ & \text { ADDED } \end{aligned}$	
1	1.51613	0.81121	-0.06725	0.46069	-6.14597	-0.03111	7.33340	rum.
	5.12096	1.74700	0.03202	0.29440	n. 10875	0.02318	17.81703	r.06233
10	51526.13828	1.60922	0.15688	0.37559	0.41769	0.08870	12.817836	0.04480
26	51526.73828	016.43750	0.00000	0.00001	$0.790 ?$	0.16412	18.46800	0.06460
28	2.67742 1033.03223	1.75854 68.23828	0.83171	0.26424	3.14753	0.55723	12.20166	0.40648
29	2.31645	0.95737	0.34708	0.00008	-0.48121	-0.10206	1.11162	0.00389
30	1.58064	2.12562	0.53101	0.21885	2.42634	0.45946	21.00674	0.07348
5	3.93548	5.08691					21.0067	0.07346

TABLE 132 URBAN KEY 1


TABLE 133 URBAN KEY 1
SAMPLE SIZE 31
DEPENDENT VARIABLE IS NOW NO. 3
analysis of variance fnr thf multiple LINFAR RFGRFSSINN


VARTANTE NO.	WEAN	DEVIATION	$\begin{aligned} & \text { RFG. } \\ & \text { C.OEFF. } \end{aligned}$	$\begin{aligned} & \text { STO.ERRNR } \\ & \text { OF REG.CNE. } \end{aligned}$	CTMPIITEO   $t$ Vallie	$\begin{aligned} & \text { PARTIAL } \\ & \text { CORR. COF. } \end{aligned}$	$\begin{aligned} & \text { STMM NIF SO } \\ & \text { ADOFN } \end{aligned}$	PRUP: VAR CUM.
+	1.51613	0.8121	-0.00\% ${ }^{\text {a }}$	0.10057	-0.0\%653	-0.02057	0.0184	0.00315
9	5.12096	1.74700	0.05079	0.06426	0.79031	0.16615	0.01215	0.00213
10	4.15451	1.60422	-0.07445	0.08177	-0.90800	-0.1\%06	0.12060	W.42122
26	51526.73828	71016.43750	0.00000	0.00000	0.27932	0.05945	0.44336	0.07760
27	2.67142	1.75854	0.14007	0.05758	2.42869	0.43981	0.85800	0.15010
28	1033.03223	4468.23828	-0.00000	0.00002	-0.24047	-0.05120	0.02160	0.00378
29	2.31645	0.45138	0.03742	0.15108	0.28929	0.156136	0.04387	0.0075
30	1.58064	2.12562	-0.07819	0.04777	-1.63665	-0.32945	0.45546	0.07971

TABLE 134 URBAN KEY 1
SAMPLE SIZE 31
DEPENDENT VARIABLE IS NOW NO. 2 analviis nf variance for thf multiplf

SOURCE OF VARIATTON.	$\overline{\text { O.F. }}$	$\begin{aligned} & \text { GUM OF } \\ & \text { SOUARES } \end{aligned}$	$\begin{aligned} & \text { MFAN } \\ & \text { SOllAR FS } \end{aligned}$	Value	p
DUF TO REGRESSITON.............	8	18.46275	2.30784	1.7488	
OEVIATION AROUT REGRESSION...	22	29.03212	1.31964		n.s.
TOTAL...	30	47.48487			


VARTARLE NO.	W弐N	SEVIATION	$\begin{aligned} & \text { REC. } \\ & \text { CDEFF. } \end{aligned}$	$\begin{aligned} & \text { STD.ERRDR } \\ & \text { OF REG.CNE. } \end{aligned}$	COMDUTEN   $T$ value	$\begin{aligned} & \text { PARTIAL } \\ & \text { CORR. COF } \end{aligned}$	$\begin{gathered} \text { SHM NF SC. } \\ \text { ADNFD } \end{gathered}$	PROP. VAR. CUM.
$\cdots$	1.51613	0.81121	0.29901	0.28016	1.06726	0.22187	0.0807	0.00170
9	5.12096	1.74700	0.44488	0.17903	2.48490	0.46814	7.18208	0.15122
10	4.15451	1.060422	-0.3353	0.22841	-1.46748	-0.29869	0.27035	0.00585
26	51526.73828	71016.43750	-0.000n0	0.00000	-1.32250	-0.27138	1.65971	0.03495
27	2.67742	1.75854	-0.00551	$6.160 \% 0$	-0.03428	-0.007\% 31	0.056614	0.40135
28	1033.03223	4468.23828	0.00008	0.00005	1.65065	0.33196	1.72034	0.03641
29	2.31645	0.95737	0.82476	0.30516	2.25 ¢61	0.43388	3.70688	0.07805
30	1.58064	2.12562	-0.22461	0.13309	-1.68767	-0.33856	3.75867	0.07914
2	4832548	1.25872						

## TABLE 135 SUBURBAN KEY 9

COEFFICIENT OF DETERMINATION 0.4072 MULTIPLE CORR. COEFFICIENT
0.6382

## SAMPLE SIZE 20

20 BLE IS NOW NO. 11


TABLE 136 SUBURBAN KEY 9
SAMPLE SIZE 20
DEPENDENT VARIABLE IS NOW NO. 8
COEFFICIENT OF DETERMINATION
0.5396
MULTIPLE CORR. COEFFICIENT
0.7346

ANALYSIS CF VAFIIANCE FUR THE MULTIPLE
LIAEAR PEGRESSIIIM

SOURCE OF VARIATIOA	C.F.	$\begin{aligned} & \text { SUN CF } \\ & \text { SOUARES } \end{aligned}$	$\begin{aligned} & \text { MEAN } \\ & \text { SOUAFES } \end{aligned}$	$\begin{gathered} \text { F } \\ \text { valde } \end{gathered}$	$p$
DUE TO REGRESSION.............. DEVIATION AROUT REGRESSICN	8 11	$51.15816$	$6.39477$	1.6118	n.s.
TOTAL...	19	94.80005			


$\begin{aligned} & \text { VARI ABLE } \\ & \text { NO. } \end{aligned}$	MĖAN	$\begin{aligned} & \text { STO. } \\ & \text { OCYIATION } \end{aligned}$	$\begin{gathered} \text { KFG. } \\ \text { CREFE. } \end{gathered}$	STC.FAKRR OF PFC.CRIE	COMPUTEU   I Valle	PARTIAL coger ent	SIM CF SO. ADIE?	PRIJP. VAF.
1	2.00000	C. 97333	-0.01299	0.56289	-0.J2302	-0.00676	2.72222	0.02872
9	4.70099	1.31842	0,04475	1.11338	0.04020	0.01212	18.87872	0.19914
10	4.17900	1.20975	0.33331	1.31308	0.25384	0.07631	1.14005	0.01203
12	34596.84766	4999 ع-10937	-C.00000	0.00031	-0.12520	-0.03772	9,80143	0.00846
13	2.45000	1.79106	0.27000	0.30174	0.81481	0.26049	1.69768	0.01791
14	1719.75000	4253.21094	-0.00027	0.00 .313	-1.98736	-0.51400	17.76 .582	0.18740
15	2.49049	1.00846	0.39503	0.61260	0.64485	$0.19) 36$	2.76.45	0.02916
16	2.35000	1.72520	C.49861	1.42788	1016532	C. 33142	5.39766	.1,05683

TABLE 137 SUBURBAN KEY 9

SAMPLE SIZE 20
DEPENDENT VARIABLE IS NOW NO. 7

COEFFICIENT OF DETERMINATION 0.5136 MULTIPLE CORR. rOEFFICIENT
0.7166
analyois uf vakiance fur till rultipll


VARIABLE	MEAN	$\begin{gathered} \text { STDI } \\ \text { BFVIATICN } \end{gathered}$	$\begin{aligned} & \text { REG. } \\ & \text { CHEFF. } \end{aligned}$	$\begin{aligned} & \text { STD. ERKUK } \\ & \text { OF REC.SNF. } \end{aligned}$	COMPUTED   T VALIIE	$\begin{aligned} & \text { PIRIIAL } \\ & \text { CHEQ PRC } \end{aligned}$	SUN CF SO. AODER	PFUP. VAF.
$\begin{aligned} & 1 \\ & 9 \end{aligned}$	$\begin{aligned} & 2.00003 \\ & 4.70 .199 \end{aligned}$	$\begin{aligned} & 0.97333 \\ & 1.31842 \end{aligned}$	$\begin{array}{r} C .45442 \\ -0.11140 \end{array}$	$0.53393$   1.15523	$\begin{array}{r} 0.77821 \\ -0.796 .45 \end{array}$	C.22844	16.05554	$0.16829$
10	4.17500	1.20975	0.50552	1.36217	0.37112	2.1112J	3.83210	2.03969
12	34596.24766	4990210937	0.00010	0.000 .71	0.21731	0.06541	0.46492	0.030482
13	2.45000	1.79106	0.24127	0.313 u	0.77080	0.23637	4.97506	0.05157
14	1718.75009	425.21044	-0.0.00034	0.02014	-0.29737	-0.04945	0.564i4	0.00584
15	2.49049	1.00846	0.36823	0.63550	$0.579 \div 3$	0.17210	2.14795	0.02227
16	2.35000	1.72520	0.34988	0.64697	0.78874	2 23122	2.65782	$0 \times 2748$
7	4.15003	2.25424						

TABLE 138 SUBURBAN KEY 9


TABLE 139 SUBURBAN KEY 9
SAMPLE SIZE 20 COEFFICIENT OF DETERMINATION 0.7323
DEPENDENT VARIABLE IS NOW NO. 5
MRILYSIS :IF YAKIGNCE FIJF THE MUL-IPLE


TABLE 140 SUBURBAN KLY 9


TABLE 141 SUBURBAN KEY 9

## SAMPLE SIZE 20

COEFFICIENT OF DETERMINATION
0.1757

DEPENDEITT VARIABLE IS NOW NO． 3

Source of vafiation	D．F．	suy lif	Mean	F	
		SUUAREE	squases	value	p
DUE TU REGRES SICN．．．．．．．．．．．． D＝YLATIOX AROUT	${ }_{8}^{8}$	1.60573	0.20372	0.293 J	
迷	19	7．834．3	2.71223		n．s．


$\begin{gathered} \text { VARIABLE } \\ \text { NO. } \end{gathered}$	rean	$\begin{aligned} & \text { sTE. } \\ & \text { Mviation } \\ & \hline \end{aligned}$	$\begin{gathered} K E G ; \\ C O++F \end{gathered}$	$\begin{aligned} & \text { STh.rrintr } \\ & \text { ciontiecare } \end{aligned}$	$\begin{aligned} & \text { Coyputtn } \\ & \text { i yabir } \\ & \hline \end{aligned}$			$\begin{aligned} & \text { renf. } \\ & \text { rom. } \end{aligned}$
1	2．couso	U．¢7333	C．C4）42	0.23849	0.17159	$0.0!316.7$		
9	4.20 .398	1．3184：	0.04025	0.47174	0.16165	0.04403		．0．3．51
10	4.179 Cu	1．2C575	0.1564	0.55035	0.28191	0.03469	0.00052	0.00006
12	34596， 84766	$49502+10937$	0．00cuo	0.0 .1000	0.41297	0.14116	0．24709	7.152705
13	2.45000	1.79100	0.00994	0.17 .784	0.07715	0．0？344	0.00815	1．00086
14	1719.75 .900	4253.21094	－0．000）1	C．conat．	－1， 22690	－v．16，1： 2	？， 01421	1， 19019 P
15	2.49 .347	1.00846	－0．Ji．44 3	0.25950	－1）． 34069	－0．1：31ia	0.04450	）．100\％94
16	2.35000	1．72520	$-\mathrm{D}, \mathrm{U} 2255$	$0.1812 n$	－0．12441	－0．0374？	$\cdots, 01102$	O．i）nlle
3	0．66350	C．70727					－	－．：nlif

TABLF． 142 SUBURBAN KEY 9

SAMPLE SIZE 20
DEPENDENT VARIABLE IS NOW NO． 2
Aidalysis of variance ruk the milt tiple linfar RFFikFScInin


## SAMPLE SIZE 20

DEPENDENT VARIABLE IS NOW NO． 11

COEFFICIENT OF DETERMINATION 0.3952
MULTIPLE CORR．COEFFICIENT
0.6287

## TABLE 143 SUBURBAN KEY 10



SAMPLE DEPEND		$3$   LE IS NOW YSIS DF VARI 1HELR		MUL'IPLE	$\begin{aligned} & \text { COEF } \\ & \text { MULT } \end{aligned}$	FICIENT OF D IPLE CORR.	ERMINATION FFICIENT	$\begin{aligned} & 0.4950 \\ & 0.7035 \end{aligned}$
SOURCE CF Vafiation			SUM UFSCUARES		$\begin{aligned} & \text { MEAN } \\ & \text { SVUAOES } \end{aligned}$	$\begin{gathered} F \\ \text { VALUE } \end{gathered}$	p	
DUE TO REGRESSIN: DEYIATICN ANOUI REGRESJIOI...			8 31   1 3	$\begin{aligned} & 77754 \\ & 42247 \end{aligned}$	$\begin{aligned} & 3.97213 \\ & 2.94750 \\ & \hline \end{aligned}$	$1.3476$	n.s.	
TCTAL... 19 64.20001								
$\begin{gathered} \text { VARIABLE } \\ \text { ND. } \end{gathered}$	MF.AN	$\begin{gathered} \text { STO. } \\ 0=\text { VIATION } \end{gathered}$	$\begin{aligned} & \text { QFGO } \\ & \text { CCFFF. } \end{aligned}$	$\begin{aligned} & \text { STU. CPFTOR } \\ & \text { ifF DC } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { CCIMPUTED } \\ & \text { : VALilf } \end{aligned}$			$\begin{aligned} & \text { PRTID. VAD. } \\ & \text { c19. } \end{aligned}$
1	2.00503	0.97333	0.82908	C. 48517	1.708 Ec	0.45132	20.05554	0.31239
2	4.70099	1.91842	0.00119	0.95965	2.20144	C. 100226	7. 71497	$1.06,098$
3	4.17900	1.20975	0.61933	1.13173	0.54722	0.16277	0.76547	0.01192
12	34596.34766	49902.1 .1937	Culoujo	0.60001	2. 27972	0.02405	0.95484	1.01490
13	2.45003	1.79106	$0.0205_{1}$	C. 26008	$0.380 \% 1$	0.02424	0.54064	1.00842
14	1719.75.20	425231094	-6,00013	C,00c12	-1.1204	-0. 32035	1, Pa 325	1.0 .02902
15	2.43047	1.00346	-0.554d8	0.52302	-1. 55087	-6.31)205	2.82329	3.04405
16	2.35042	1.72520	0.19437	0.36430	2,53729	\% 16000	2, 35232	3,21324
10	3.3C.J3 1.83819							
			TA	145 S	UBURBAN	KEY 10		
SAMPLE SIZE 20		0 Le IS NOW No	9		COEFFICIENT OF DETERMINATION MULTIPLE CORR. COEFFICIENT			$\begin{aligned} & 0.6754 \\ & 0.8218 \end{aligned}$
arialysis df vabilainc.f frij thf milltiple								
Source cf variatica			F. SUM IIF		$\begin{aligned} & \text { MEAR! } \\ & \text { GUCDBEES } \end{aligned}$	$\begin{gathered} f \\ \text { VALlle } \end{gathered}$	p	
OUE TO REGRESEION.............			5C.62157		$\begin{aligned} & 6.32770 \\ & 2.2116 .3 \end{aligned}$	2.6610	n. 5.	
TOTAL... 19 74.95JC1								
varlable	MFAN	$\begin{gathered} \text { STG. } \\ \text { OFIATION } \end{gathered}$	$\begin{aligned} & \text { HEG. } \\ & \text { CGFEEE } \end{aligned}$	STO.EPRIUP OF QErncaE	criypuifn   - $T$ valut	$\begin{aligned} & \text { Pintlat } \\ & \text { Crap_ } \end{aligned}$		$\begin{aligned} & \text { WoIP. VAF. } \\ & \text { culin. } \end{aligned}$
1	2.00000	0.97333	-0.43073	0.42027	-1.04631	$\cdots 0.3$ co.36	0.05556	J.0.0074
2	4.70099	1.31342	2.34010	0.82128	2.21505	0.64711	10.12374	$11.25522$
3	4.17903	1.20975	-1.75474	C. 72038	-1.78935	-0.474\%	-. 50205	). 11344
12	34596.6470.6		0.00211	2.anuj)	0.65323	0.211313	2, 134330	T. 000364
13	2.45cco	1.79106	-C. 62423	0.32529	-2.74301	-0.64415	$11.4033 n$	J. 15215
14	1714.75010	4253.21094	0.00023	0.06910	2.23522	(1, 523715	2. 3iceinh	1.11163
15	2.49349	1.00346	0.44787	0.45730	0.97923	C. 23316	1.65051	3.02202
16	2.35000	1.72512	-	6.31967	-inchala	-0.23301	1,46603.	101956
9	3.55000	1.78614						

TABLE 146 SUBURBAN KEY 10
SAMPLE SIZE 20
DEPENDENT VARIABLE IS NOW NO. 8 Ai.aLYEIS TF VAPIAICE FGH THF MULTIPLE

SDURCE HF vakIation	O.F.	$\begin{array}{r} \text { SuM lif } \\ \text { siluno } \\ \hline \end{array}$	$\begin{aligned} & \text { AEAH } \\ & \text { SOUMERS } \end{aligned}$	$\begin{gathered} F \\ \text { valur } \end{gathered}$	p
UUE TO REGRESSION.	8	43.147 Cl	5.39345	?.7681	
DFVIATIOM AROUT SciEfeiflikne	11	$21.42 \% 4 \%$	1.34743		n.s.
TGTAL...	19	64.95605			


VARIABLE NO.	MEAN	$\begin{aligned} & \text { STG. } \\ & \text { SEVIATLOK: } \end{aligned}$	$\begin{aligned} & \text { NEG. } \\ & \text { CORFF. } \end{aligned}$	$\begin{aligned} & \text { STU.ERYOP } \\ & \text { SFP:O.CUE. } \end{aligned}$	corpuren i valur	$\begin{aligned} & \text { PANTIal } \\ & \text { contry } \end{aligned}$		$\begin{aligned} & \text { PROD, VAR } \\ & \text { CUNAN } \end{aligned}$
1	2.cosco	C. 97333	-0.71273	0.35437	-1.30721	-0.47949	4.50nvo	J.06971
2	4.7000 .7	1.31842	1.15278	1.71036	1.3494 .2	(1)37102	17.02931	0.66342
3	4.17300	1.23975	-0.34468	0.91977	-0.37467	-J.1i2?5	C.41110	0.00637
12	34596nalith	492)23037	-6001000	jercaol	$-2.17929$	-i.7533.3	1.46191	1.02311
13	2.45330	1.79106	-0.65J60	0.21140	-3.07752	-0.63519	13.92f,5?	3.21579
14	1719.75309	4353.21094	0.00 .114	0.rioung	1.64151	2,4.216.1	3.02915	1.04693
15	2.43049	1.00846	0.50425	c.4 3 970	1.15418	0.33625	2.61127	7.04045
16	2.35029	1.72520	-0.017752	1,25678	-0,25093	-0,013	2, $2 \times 114$	
n	3.65005	1.84317						



TABLE 149 SUBURBAN KEY 10

SAMPLE SIZE DEPENDENT	$\begin{aligned} & 20 \\ & \text { ARIABLE IS NOW } \end{aligned}$			COEFFICIENT OF DETERMINATION MULTIPLE CORR. COEFFICIENT			$\begin{aligned} & 0.2563 \\ & 0,5063 \end{aligned}$
SOURCF EF VARIAT ItI:		r.f	$\begin{gathered} \text { Suy It } \\ \text { sundts } \\ \hline \end{gathered}$	$\begin{aligned} & \text { MFAN } \\ & \text { SOURK:S } \end{aligned}$	$\begin{gathered} \text { + } \\ \text { valint } \end{gathered}$	p	
DUE TU REGKESSIJN DEVIALIOR ABOUT REGEESSIC:E		$\stackrel{\varepsilon}{1}$	$\begin{aligned} & 17.969 .7 \\ & 5 c .98977 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.19516 \\ & 4.63 .61 \\ & \hline \end{aligned}$	0.47	n.s.	
ICTSL...		1.7	6,9.55035				


$\begin{aligned} & \text { VARIABLE } \\ & \text { NO. } \end{aligned}$	Mr AN	$\begin{gathered} \text { STB. } \\ \text { DEviATion } \end{gathered}$	$\begin{gathered} \text { ErGe } \\ \text { clurfe. } \end{gathered}$		$\begin{aligned} & \hline \text { PoMDute } \\ & \text { i valle } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { raitial } \\ & \text { rutiorill } \end{aligned}$	$\begin{aligned} & \text { Cut IF sob } \\ & \text { An:FN } \end{aligned}$	$\begin{aligned} & \text { DRIJP. VAF. } \\ & \text { CIM. } \end{aligned}$
1	2.3u3」	0.4733?	C. 27520	0.60836	0.45235	0.13514	0.10	0.0
2	4.75090	1.2164?	$0.34>90$	1.20376	0.320 .51	0.39197	2.1528 C	1.03140
3	4.17930	1.20575	0.41330	1.41917	0.271 .2	0.08147	0.4)354	0.005889
12	34556.14400	42902.10937	-0.00031	O.r Douje	-0.05301	-0.14318	2.07673	1.03070
13	2.450()	1.79136	-0.20538	0.32612	-0.62777	-0.1365s	6.42675	n.cs375
14	1714.7:2,30	4253.21094	-c.0.0006	G.50214	-0.44234	-0.13218	1.44255	$0.02396^{2}$
15	2.4904 .3	1.00846	-0.06511	0.6 .6211	-0.J9833	-0. 22763	C. ${ }^{2} 0069$	i. 0.0439
16	20.5003	1.72520	-0.42936	0.46246	-.).2033)	-0. $2+4.0$	4.51764	2. $0,0.6 .71$
5	?.653)	1.0) 04.5						



TABLE 152 SUBURBAN KEY 11

SAMPLE SIZE' 20
DEPENDENT VARIABLE IS NOW NO. 8

COEFFICIENT OF DETERMINATION 0.4879
MULTIPLE CORR. COEFFICIENT 0.6985
dinhlyels if vaplayee ful the rultipl:
IINEAM Rrgitssilom


$\begin{gathered} \text { VARI ABLE } \\ \text { NO. } \end{gathered}$	Hraf	$\begin{gathered} \text { sto. } \\ \text { مrviation } \\ \hline \end{gathered}$	$\begin{aligned} & \text { MEli. } \\ & \text { COEFF. } \end{aligned}$	$\begin{aligned} & \text { STOARRFIK } \\ & \text { OF RI ri. rife. } \end{aligned}$	C(1.4PUTEI)   T VALIIE	$\begin{aligned} & \text { FAKII:L } \\ & \text { rofr. rior. } \end{aligned}$		$\begin{gathered} \text { PFUP. VAR. } \\ \text { CIM. } \end{gathered}$
1	2.00000	0.97333	C. 44566	0.4C6es	1.09504	0.31362	5.55555	0.12470
2	4.701090	1.31842	0.84565	0.505!3)	1.05049	0.31195	7.70465	0.17203
3	4.17900	1.20575	-C.164i)	0.94739	-0.17283	-C.05204	2.1026!	6.04720
10	34598,84760	499.)2.10937	0.63071	0.00071	0.36853	0.11044	0.09378	0.00211
11	2.4500.3	1.79106	-0.224m4	0.71816	-1.01061	-0.2nai 74	3.84411	$0 . C 8629$
12	1719.75000	4253.21054	0. 0rinil	0.0 .1010	0.91102	0.07743	0.04486	0.00101
13	2.47049	1.000\%6	0.11530	0.44273	0.20076	0.0753 s	0.11953	0.00044
14	2.35 .300	1.72520	-0.33C15	0.30977	$-1.36316$	$-0.306 .6$	2. 36646	0.05312
8	3.15030	1.83125						



TABLE 155 SUBURBAN KEY 11
SAMPLE SIZE 20
DEPENDENT VARIABLE IS NOW NO. 5
AhALYSIS LIT VAIIANC? HIOS THE MULTIDL?

SOURCE Lf VARIATICA	C. F -	$\begin{array}{r} \text { SUM OF } \\ \text { SCUAT.ES } \end{array}$	$\begin{aligned} & \text { MEAN } \\ & \text { SOUADES } \end{aligned}$	$\begin{gathered} F \\ \text { YALUR } \end{gathered}$	p
DUE TO REGRESSION.............	8	18.424C5	2.31051	1.0501	
DEVLILCM ABOUT REGRESSICluere.	11	24.06594	2.18702		n.s.
TITAL...	19	42.55005			


$\begin{aligned} & \text { VARIABLE } \\ & \text { NO. } \\ & \hline \end{aligned}$	MEAN	$\begin{aligned} & \text { STO. } \\ & \text { CEVIATION } \end{aligned}$	$\begin{aligned} & \text { FEG. } \\ & \text { CCEFF. } \end{aligned}$	STD.FPFIGK OF EFC.COF	Computfil   I valut	$\begin{aligned} & \text { FAKIIML } \\ & \text { CCRE CNO } \end{aligned}$	$\begin{gathered} \text { su: rir s.o. } \\ \text { alinef } \end{gathered}$	PHJP. VAR. (114.
1	2.06000	0.97333	0.24015	0.41790	0.58809	0.1748 .2	3.55556	0.08356
2	4.70099	1.31842	0.52546	0.817 .79	10.64757	010163	10.98117	0.25808
3	4.179 J	1.20975	$0 . C 6568$	0.97509	0.10223	C.03.)2t	0.3546,	0.00833
10	34:90.34760	49902.10937	0.00000	$0.600^{\text {a }}$	0.34669	0.10327	0.33742	0.71897
11	2.45000	1.79104	-0.10034	0.22407	-0.440)5	-0.13389	1.1758 i	0.02764
12	1719.75000	4253.21094	-0.00005	Cevcnio	-1.5)2.31	-0.15104	1.23807	0.02910
13	2.49049	1.00846	0.22204	C.45.491	J.40816,	0.14565	1.30153	0.00421
14	2.35000	1.72520	-0.14405	0.31774	$-2.63316$	-0.13543	11.440819	$1) .01057$
5	3.05000	1.49649						



TABLE 157 RURAL KEY 3
SAMPLE SIZE 29
DEPENDENT VARIABLE IS NOW NO． 13

## COEFFICIENT OF DETERMINATION <br> 0.1979

Snurce df variat Iun	O．F．	$\begin{aligned} & \text { SUM UF } \\ & \text { SCUARTS } \end{aligned}$	$\begin{aligned} & \text { IARAN } \\ & \text { SCUIARE:S } \end{aligned}$	$\begin{gathered} F \\ \text { valluf } \end{gathered}$	p
DUE TO REGRESSICN．．．．．．．．．．．．．．	8	5.31418	0.68921	$0.616 \%$	
	20	22.34311	1.117411		ti．s．
TCTAL．．．	26	27.362 .30			


$\begin{aligned} & \text { VARI ABLE } \\ & \text { ND. } \end{aligned}$	NEAN	$\begin{gathered} \text { STC. } \\ \text { nEYIATIOM } \end{gathered}$	$\begin{aligned} & \text { KEG. } \\ & \text { COKPF. } \end{aligned}$	$\begin{aligned} & \text { STU.ERFOF } \\ & \text { UF REG CNE } \end{aligned}$	Co4puten   T YALUF	$\begin{aligned} & \text { rakilht } \\ & \text { C(1SR, COR } \end{aligned}$	$\begin{gathered} \text { SUA OF } \\ \substack{\text { nonen }} \\ \hline \end{gathered}$	$\begin{gathered} \text { PFillo. VAF. } \\ \text { = } 1 \text { lu. } \end{gathered}$
1	1.43276	0.78471	－0．0．1924	0.28343	－0．31417	－0．070：3	（1．534）6	1.01017
2	4.97689	0.79248	0.20693	0.27674	0.96310	0.21753	7.0 .0760	J．0758n
3	4.02758	1.55918	0.03952	0.15017	0.26314	0.05375	a．0．\％．8？	0.06024
14	25426.17672	37806．601961	0.00000	0.10001	n． 41566	0.17643	1.13490	0.04249
15	3.37471	1.32055	－0．10107	$0.174{ }^{\text {a }}$	－0．58）86	－0．12880	7．106\％5	0.003 R2
16	574.17236	1537.29199	0.00004	C．000：5	C．23714	0.7546 .3	0.22 .124	3．0nele
17	2.27241	C． 91960	0.24890	0.256130	0.96927	0.21182	0.6 （0x）	J．02463
18	2.27586	1.83073	－6．10144	U．12367	－0．71．428	－0．16．033	0．646．7？	n．10236\％
13	3.93103	0.79754						

TABLE 158 RURAL
KEY 3
SAMPLE SIZE 29 COEFFICIENT OF DETERMINATION 0． 2190
DEPENDENT VARIABLE IS NOW NO． 12. MULTIPLE CORR．COE FFICIENT
0.4679

AINALYミIS GF JARIAN゙LT TUD THE MULTIPLE LIAEAD PFGRESSIIN

SOURCE CF VApIATICA	「．F．	$\begin{aligned} & \text { SUM UF } \\ & \text { SnIJaRE: } \end{aligned}$	$\begin{aligned} & \text { MFAN } \\ & \text { SMUAPtS } \end{aligned}$	$\begin{gathered} \text { F } \\ \text { VALUE } \end{gathered}$	p
OUE TO REGRESSICN．．．．．．．．．．．．．	d	19.66122	2.45765	0.710 .7	
DEVIATION ADIUT ERGRISSICN．．．	20	70.13188	？．506 5		n．s．
TITAL．．．	28	84.79311			


$\begin{aligned} & \text { VARIABLE } \\ & \text { NO. } \\ & \hline \end{aligned}$	M［．AN	$\begin{aligned} & \text { STR. } \\ & \text { CEVIATION } \end{aligned}$	$\begin{aligned} & \text { FEG. } \\ & \text { C.IFFF. } \end{aligned}$	$\begin{aligned} & \text { STD. ERPOF } \\ & \text { GF RFG. } C \text {. } \end{aligned}$	Cn：Aputen   T Valuf	$\begin{aligned} & \text { WAFTIAI } \\ & \text { COFF. COV. } \end{aligned}$	$\begin{gathered} \text { Stis lif sor } \\ \text { nomen } \end{gathered}$	$\begin{gathered} \text { PR:SP. VAR. } \\ \text { CIIM. } \end{gathered}$
1	1.48276	C． 73471	0.05749	0.5021 J	0.11451	0.02560	0.20110	0.100224
2	4.97681	0.79248	－0．47178	C．49024	－0．76235	－0．216．7	1.09318	0.07155
3	4.02758	1.55818	0.42319	0.26603	1.59 975	0.33513	$6.4723^{7}$	0.07208
14	25420.13672	$372 C 6.60156$	0.00011	0.00001	0.62587	0.1308 .3	1.76449	1.01965
15	3.37931	1.32055	0.25165	0.30825	0.81636	$0.179 \% 8$	0.33520	）． 0.00373
16	574．17230	1537.29169	－0，00039	C．00026	$-1.50381$	－0．3190～	8.67109	0.108657
17	2．27241	C． 91988	－0．08322	0.45491	－0．19294	－0．04337	0.04577	v．000ril
18	2.275818	1.83023	0.06198	0.2350 ？	0.25947	0．0570？	11． 23108	0.00203

SAMPLE SIZE 29
DEPENDENT VARIABLE IS NOW NO. 11

COEFFICIENT OF DETERMINATION MULTIPLE CORR. COEFFICIENT
0.4275
0.6539


TABLE 160 RURAL
KEY 3
SAMPLE SIZE 29
DEPENDENT VARIABLE IS NOW NO. 10
COEFFICIENT OF DETERMINATION
0.2279
inalyis ge vefidalice ion the multiolf liafa $=$ prgeresi.


$\begin{aligned} & \hline \text { VARIABLF } \\ & \text { NO. } \\ & \hline \end{aligned}$	FEAN	$\begin{aligned} & \text { STHO } \\ & \text { DEVIATION } \end{aligned}$	$\begin{aligned} & \text { RYG: } \\ & \text { r.iPFF. } \end{aligned}$	$\begin{aligned} & \text { STD. FRhCID } \\ & \text { OF FFi. Cil }=. \end{aligned}$	Cnłpurfo   t value	$\begin{aligned} & \text { FRETIAL } \\ & \text { COKH. rif. } \end{aligned}$	$\begin{aligned} & \text { sur mi se. } \\ & \text { s.onen } \end{aligned}$	Pronip. VAF.
$\frac{1}{2}$	1.48276	0.78471	0.05136	C.40073	0.12816	0.012804		
2	4.97689	C. 79248	0.14816	0.39177	0.12318	0.02704	0.25407 0.11177	${ }^{2} .000{ }^{\text {a }}$ /
3	4.32758	1.55818	0.13316	0.21232	0.02 .718	0.133813	1.015442	1).00070
14	25426.1307 ?	372C0.60156	$0 . \mathrm{vocul}$	0.000101	1.52385	0.23343	3.978 .34	).06R7t.
15	3.37931	1.32055	C. 2586	0.24602	1.213 .78	0.28197	5.56047	
16	574.17236	1537.29199	0.00009	0.0 .0021	0.43441	0.046 .613	0.45135	0.0 ¢7at
17	2.27241	C. 91988	-0.08716	0.363177	-0.24306	-0.05360	0.00106	0.00002
18	2.2.7586	1.83023	0.17314	0.18757	0.92317	0.20714	1.00317	ก.03280

TABLE 161 KURAL KEY 3
SAMPLE SIZE 29
DEPENDENT VARIABLE IS NOW NO. 9
 lincaí ircesssic:


$\begin{aligned} & \hline \text { VARIABLF } \\ & \text { NU. } \end{aligned}$	M「AN	$\begin{aligned} & \text { STO. } \\ & \text { DFVIATMEN } \end{aligned}$	$\begin{aligned} & \text { HEG. } \\ & \text { CIIFFF, } \end{aligned}$	$\begin{aligned} & \text { STU.FRGAK } \\ & \text { IF REC.ORHC. } \end{aligned}$	Crifpute   $T$ Valur	$\begin{aligned} & \text { PARTIAL } \\ & \text { rraf. cir. } \end{aligned}$	$\begin{gathered} \text { sum rif } 50 . \\ \text { mingron } \end{gathered}$	PrIP. VA.F. rily.
1	1.4877t	C. 78471	U. 00132	0.4 C347	0.00327	0.10073	0.001559	
2	497649	C. 79248	-0.46711	0.305070	-1.12312	-0.26. $0_{0} 15$	2.32524.	1.00009 ). 036.87
14	454.02756	1720.55818	0.37875	0.21493	1.76301	0.36675	$8.0 \% 981$.	1.12416
14	25426.13672	37206.60156	0.10021	0.00001	1.45735	0.31021		0.019008
15	3.37931	1.32055	0.13659	C. 24373	0.54984	0.12303	1.97640	0.03047
16	574.17236	1537.2919n	2. 010000	0.00071	0.01538	0.00394	0.07670	0.00118
17	2.27241	C.91938	0.19708	0.36736	0.53546	0.1171 J	1.2.1018	0.01959
16	2.775 .16	1.83023	0.11976	0.18979	0.6310 ?	C. 13972	O.9105R	0.31005



TABLE 163 RURAL KEY 3

SAMPLE SIZE 29 DEPENDENT VARIABLE IS NOW aidalysis of Linf	$\begin{gathered} \text { Jo. } \\ \text { IANCE } \\ \text { REGFF } \end{gathered}$	the mult	COEFFICIENT OF DETERMINATION MULTIPLE CORR. COEFFICIENT			$\begin{aligned} & 0.6671 \\ & 0.8168 \end{aligned}$
SUUKRCE CF VARIATION	R.F.	$\begin{aligned} & \text { SUM II } \\ & \text { SQUARES } \end{aligned}$	$\begin{aligned} & \text { MENN } \\ & \text { SGUARES } \end{aligned}$	$\stackrel{F}{\text { VALUE }}$	$p$	
DUE TU REGREESİN.	${ }^{3}$	27.32582	3.41623	5.010		
deviation about regqesssicn...	20	13.63570	0.68179		n.s.	
total...	${ }^{28}$	40.96558				


$\begin{aligned} & \text { VARIABLE } \\ & \text { NO. } \end{aligned}$	VEAN	$\begin{aligned} & \text { ©TV. } \\ & \text { OFVIATICN } \end{aligned}$	$\begin{aligned} & \text { RFG. } \\ & \text { CREFF. } \end{aligned}$	STD.ERROF OF RFC.CIE	COMPUTFO TVALIIF	$\begin{aligned} & \text { FANTAL } \\ & \text { COFK. rif. } \end{aligned}$	$\begin{aligned} & \text { Eur. lif Sc. } \\ & \text { an:rn } \end{aligned}$	PEIO. VAP r.uni.
1	1.48276	0.73471	-C.95807	0.22140	-4.32741	-0. 69534	13.013350	3.33939
2	4.976077	0.7924 B	-0.341)93	0.21617	-1.57714	-0.33259	0.44408	$1.010 \mathrm{R4}$
3	4.02758	1.55318	0.31689	0.11730	2.70147	0.517.j6	3.73502	W.09606
14	$75426.136,72$	37206.60156	3.00060	$0 . C 00 n 9$	0.27179	0.160166	0.03366	1.10 nCH
15	3.37931	1.3205.5	0.19016	0.13592	1.39954	0.29857	3.85424	T.09421
16	574.17236	15.37.29199	-0.000 5	C.00011	-0.45154	-0.16046	11.0 UAS 6	0.00021
17	2.27241	0.91788	0.43493	0.20059	$2.11,327$	0.43 .627	4.45701	T. 1 orkn
18	2.27586	1.83023	0.10417	0.1036 .3	1. 00523	0.21930	ก.ar89	1.016 .82

TABLE 164 RURAL KEY 3
SAMPLE SIZE 29
DEPENDENT VARIABLE IS NOW NO. 6
ANALYSIS DF V'rIance fig the multinie LIMFAR FCCRESSIIIN

SOURCE OF VITRTATITN	B.F.	$\begin{aligned} & \text { SUM BI } \\ & \text { SOUARES } \end{aligned}$	$\begin{aligned} & \text { KIFSN } \\ & \text { SIJUAKFS } \end{aligned}$	VALUi	P
TUE TURECRESSTCTV.............	8	12.66773	1.58347	0.7890	
OEVIATION AB.JUT REGRFSSICN...	20	32.02196,	1.60110		$<.01$
TCTAL...	28	44.68970			


VARIABLE Nli.	MEAN	$\begin{aligned} & \text { STROB } \\ & \text { OFVIATICN } \end{aligned}$	$\begin{aligned} & \text { KFG. } \\ & \text { CNEFF. } \end{aligned}$	$\begin{aligned} & 5 \text { Th. FRPIJR } \\ & \text { OF PFG.CNF. } \end{aligned}$	cतynuifn   TVALHF	$\begin{aligned} & \text { rintinl } \\ & \text { cura. cus. } \end{aligned}$	$\begin{aligned} & \text { sum cf } 50 . \\ & \text { anofo } \end{aligned}$	$\begin{aligned} & \text { FFOF. VAR. } \\ & \text { riv. } \end{aligned}$
1	$1.432 i 6$	C. 78471	-0.17983	0.33978	-0.53005	-0.1itio	0.60 165	J.01563
2	4.97604	0.79246	-0.30251	0.31127	-0.91320	-0.2C007	1.03799	0.02? 2?
3	4.32753	1.55813	-0.06026	6.17976	-0.33:321	-3.07775	1.0 .6847	6.t3735
14	25426.13672	37206.1.0156	0.00000	0.00001	0.37123	0.02275	0.30400	0.00080
15	3.37931	!. $33 n 55$	0.25154	0.20824	1.26763	0.36 .170	$5.69 ? 3$	0.12718
16	574.17236	1557. ${ }^{\text {a }}$ : 99	C. $000 \mathrm{J2}$	0.00016	0.13266	U. Oefers	0.31340	1. 00701
17	2.27241	C.91988	0.39130	0.30737	1.29249	0.6776	2.0.61,6,	. 1.06638
18	2.?75月6	1.83023	0.10740	0.15881	0.0405 A	0.01041	0.00347	n.Onc.un

TABLE 165 RURAL KEY 3
SAMPLE SIZE 29
$\begin{array}{lll}\text { COEFFICIENT OF DETERMINATION } & 0.1688 \\ \text { MULTIPLE CORR }\end{array}$ MULTIPLE CORR. COEFFICIENT
0.4108

ANALYSIS OF VIUIANE FCT THF VIL ITIE


TABLE 166 RURAL
KEY 3
SAMPLE SIZE 29
DEPENDENT VARIABLE IS NOW NO. 4



TABLE 167 RURAL KEY 2

SAMPLE SIZE 29 DEPENDENT VARIABLE IS NO	O.		COEFFICIENT OF DETERMI:AATION MULTIPLE CORR. COEFFICIENT			$\begin{aligned} & 0.2694 \\ & 0.5190 \end{aligned}$
ANALYSIS DF VARIANCE GIK THE MILTTIPIE1 INFAR QEGRESSICN						
SOURCE OF VARIATITN	D.F.	$\begin{aligned} & \text { SUM UF } \\ & \text { SQUARFS } \end{aligned}$	$\begin{aligned} & \text { MEAN } \\ & \text { SDUARTS } \end{aligned}$	${ }^{\mathrm{F}} \mathrm{~F}$	p	
OUE TO REGRESSIO'N.	R	42.74370	5.34296	0.9216		
DEYIATION ABDUT REGZESSİN...	20	115.94500	5.79730		n.s.	
total...	23	158.68970				


$\begin{aligned} & \text { VARIABLE } \\ & \text { NO. } \\ & \hline \end{aligned}$	- MEAN	$\begin{aligned} & \text { STR. } \\ & \text { DEVIATLON } \end{aligned}$	$\begin{aligned} & \text { REG. } \\ & \text { ClIFF. } \end{aligned}$	$\begin{aligned} & \text { STO.ERPCR } \\ & \text { OF R.EG.CNF } \end{aligned}$	COMPUTET T VALUF	$\begin{aligned} & \text { PARTIAL } \\ & \text { COUR. CGR. } \end{aligned}$	$\begin{aligned} & \text { SUK OF } 50 . \\ & \text { AnnEn } \end{aligned}$	$\begin{aligned} & \text { PRIOP. VAP. } \\ & \text { CIM. } \end{aligned}$
1	1.48276	0.78471	-0.73844	0.64559	-1.14372	-0.24779	4,13565	0.02609
9	4.97689	0.79249	0.07868	0.63035	0.12482	0.07790	2.15067	. 2.01361
10	4.02758	1.55318	0.07225	0.34206	0.21121	0.04713	5.0724.3	.).03196
16	25426.13672	37206.60156	0.00001	0.30001	0.87061	0.19109	1.26968	0.00737
17	3.37931	1.32055	0.27576	0.39635	0.69574	0.15372	0.90017	1).00567
18	574.17236	1537.29199	0.00014	0.00033	0.42592	0.09479	0.01096	0.00007
19	2.278 .41	0.91988	-1.21173	0.58492	-2.07102	-0.42032	17.56140	0.11067
20	2.27 586	1.83023	0.42985	0.33219	1.42244	0.30310	11.72940	0.07392
15	4.10345	2.38065						

SAMPLE SIZE 29
DEPENDENT VARIABLE IS NOW NO. 14 analysis of variance fot tha multiple linear kegressicn

SUUKCE UF VARTATIJK	Ü.F.	$\begin{aligned} & \text { SUA IF } \\ & \text { SUHARE } \end{aligned}$	$\begin{aligned} & \text { MESK } \\ & \text { SOUSRES } \end{aligned}$	$\stackrel{F}{\text { valut }}$	$p$
JUE TU REGRESST.TN..	8	20.49017	7.56127	1.3762	
DEVIATICH ABOUT REGRFSSIUR....	20	27.30304	1.36315		n.s.
TOTAL...	28	47.79321			


$\begin{aligned} & \text { WARTABELE } \\ & \text { NO. } \end{aligned}$	E Mrak	STD.	$\begin{aligned} & \text { EFG. } \\ & \text { CCEFF. } \end{aligned}$		C.014   TVilut	$\begin{aligned} & \text { MRTITL } \\ & \text { cOKK. rar. } \end{aligned}$		$\begin{aligned} & \text { penf. VAF } \\ & \text { rom. } \end{aligned}$
1	1.48276	0.78471	-0.82433	C.31? ${ }^{\text {c }}$	-2.631.?	-0.50711	12.8110n	). 26805
9	4.97089	0.79248	0.01687	0.30537	0.05514	0.151313	0.46372	U. C(1970
10	4.02738	T.55HTE	0.22412	C.165¢9	1.35323	0.28903	2.16688	J.04534
16	25426.13672	37206.60156	C. 00001	0.00001	1. L2626	0.34417	2.13130	0.04459
17	3.97931	1.32055	-C.030.33	$0.192^{73}$	-0.15611	-0.0348\%	0.16169	11.0033 P
18	574.17230	1537.29199	C. 00001	0.10016	0.0678	0.1149 .3	0.19344	0.00405
19	2.27241	0.91988	0.39030	$0.283 \mathrm{H}_{4}$	L. 33933	0.23697	2.54727	0.05330
20	2.27586	1.83023	-0.0.11534	0.146164	-0.10400	-0.0233:	0.01494	0.00 .931
14	$4.2750{ }^{\text {a }}$	1.30448						

TABLE 169 RURAL
SAMPLE SIZE 29
DEPENDENT VARIABLE IS NOW NO. 13
didalysis Cf Variaince for thf multiple

SUURCE CF Vafiation	C.F.	$\begin{gathered} \text { SUM } 0 F \\ \text { Sijulines } \\ \hline \end{gathered}$	$\begin{aligned} & \text { MEAn } \\ & \text { SiJMAFRS } \end{aligned}$	VALIIE	$p$
DUE TU REGKE! SICN.............	8	33.18736	4.14342	2.06.7:1	
DEVIATION ABilUT HEGRFSSICN...	20	40.12318	2.30616		n.s.
TOTAL..	28	73.31055			


| VARIABLE | NEAN |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NO. |  |

TABLE 170 RURAL KEY 2
SAMPLE SIZE 29
DEPENDENT VARIABLE IS NOW NO. 12
ANALYBIS If VARIANCF FOE THIL MULTIPIF LIAFAF HEGFFSSIIJ:

soturce of variatica	n.F.	Su'M Cr	MESN	$F$	
		soundrs	Sountes	VALUF	p
DUE TU PEGRESSIGN.	8	27.56107	$\cdots .44515$	2.0.7?	
DEVIATION AREUT REGEFSSICH...	20	33.P8742	1.69\%37		n.s.
TC TAL...	28	61.44849			


$\begin{aligned} & \overline{\text { VARI }} 4 \overline{\mathrm{LE}}^{\text {NJ. }} \\ & \text {. } \end{aligned}$	MEAN	$\begin{aligned} & \text { STO. } \\ & \text { DIVIATIGN } \end{aligned}$	$\begin{aligned} & \text { GTG. } \\ & \text { CUEFF. } \end{aligned}$	$\begin{aligned} & \text { STO.ERLUR } \\ & \text { Bf PE.G.C.UE. } \end{aligned}$	CIMPUTE゙)   T Valise	$\begin{aligned} & \text { FaFtIaL } \\ & \text { cokr. C'J!. } \end{aligned}$	$\begin{gathered} \text { Slla: lif sn. } \\ \text { annt } \end{gathered}$	$\begin{gathered} \text { MRNO. VAR. } \\ \text { cig. } \end{gathered}$
1	1.40270	0.78471	-0.675d2	0.34562	-1.43i35	-0.5.734	2.104027	1.03320
9	4.97689	C. 79748	0.42402	0.34 .178	1.24426	0.26104	7.5R4\&0	0.04208.
10	4.02758	1.55818	0.06561	0.17472	0.35478	0.07903	0.30034	9.00489
16	25426.13672	37206.60156	0.00002	0.cornl	2.93465	0.4 .3566	6.06289	0.13154
17	3.37931	$1.32 C 55$	0.15523	0.21:?7	0.72444	0.15997	1.27124	0.03045
18	574.17236	1537.29199	-0.00018	0. 3 nola	-1.00189	-0.21finl	0.0 .3033	$0.01514^{\circ}$
19	2.27241	0.91938	0.1815 A	0.31627	0.57423	0.12736	7.76512	0.04500
20	2.2758 is	1.83023	0.31623	$0.163 ? 7$	2.30296	0.45732	R.93631	0.14624

COEFFICIENT OF DETERMINATION
0.4418 MULTIPLE CORR. COEFFICIENT
0.6647

DEPENDENT VARIABLE IS NOW NO 11
analysis of variance for the multiplf ANALYSIS OF VARIANCE FOK ?

SOURCF CT VARIATIOA	F.F.	$\begin{aligned} & \text { SUM OF } \\ & \text { SQUARES } \end{aligned}$	$\begin{aligned} & \text { MEAN } \\ & \text { SBUAFES } \end{aligned}$	$\begin{gathered} F \\ V A L U E \end{gathered}$	D
OUE TO REGRESSION.	8	27.39311	3.42415	1.9789	
DEVIATION MOOUT RFGRFSSICN...	20	34.60699	1.73035		n.s.
TOTAL...	28	62.00000			


$\begin{aligned} & \hline \text { VARIABLE } \\ & \text { NU. } \end{aligned}$	MEAN	$\begin{gathered} \text { sino } \\ \text { devintion } \end{gathered}$	$\begin{aligned} & \text { HEG. } \\ & \text { CMEFF. } \end{aligned}$	$\begin{aligned} & \text { STU.ER4nt } \\ & \text { OF REC; C.OF. } \end{aligned}$	CIIYPUTEO TVALUF	$\begin{aligned} & \text { raftint } \\ & \text { rerifk. COF. } \end{aligned}$	$\text { Sllx ni }<\text { ne }$ Alinf	$\begin{aligned} & \text { PEitP. VAN. } \\ & \text { r.tim. } \end{aligned}$
1	1.43270	0.78471	-0.44778	0.35270	-1.26955	-0.27309	1.45000	0.02339
9	4.97687	0.79748	$0.46,358$	0.34437	1.34515	0.28823	0.79385	1.10961
10	4.02753	1.55818	0.23489	0.18688	1.27336	0.27464	0.53830	0.00000
16	25420.13472	37206.60156	0.000011	0.00001	1.52024	0.32186	4.38744	J.0707:
17	3.37931	1.32055	C. 32342	0.21654	1.51671	0.32113	5.18133	ن.08357
18	574.17236	1537.29199	-0.00030	C.00c1a	-1.62705	-0.34190	2.89765	0.04674
19	2.27241	0.91988	0.43003	0.31956	1.34572	C. 28815	4.7A198	2.07113
20	2.27586	1.03023	0.14531	0.16909	0.98017	0.19311	1.34051	0.02162
11	4.00000	1.48805						

TABLE 172 RURAL
SAMPLE SIZE 29
DEPENDENT VARIABLE IS NOW NO. 8
aAalyjis of vafiancf fric thif nultiple

SIURCE CF VARIA?TUK	C.F.	$\begin{aligned} & \text { SUM IJF } \\ & \text { SGUARE: } \end{aligned}$	$\begin{aligned} & \text { MIEAN } \\ & \text { SOUAFTS } \end{aligned}$	VALIIF.	p
OUE TO REGRESSTIN.............	8	52.24034	6.53035	1.852 J	
DEVIATION ABDUT REGPESSICIN...	20	70.51840	$3.5259 ?$		n.s.
TOTM...	23	122.75879			


$\begin{aligned} & \hline \text { VARI ABLE } \\ & \text { NU. } \end{aligned}$	MEAN	$\begin{aligned} & \text { STD. } \\ & \text { OEVIATION } \end{aligned}$	$\begin{aligned} & \text { REG. } \\ & \text { COEFF. } \end{aligned}$	$\begin{aligned} & \text { STN. FEERK } \\ & \text { OF FIC..C.IF. } \end{aligned}$	$\begin{aligned} & \text { CUMPUFED } \\ & \text { I VALUE } \end{aligned}$	$\begin{aligned} & \text { FARTIAI } \\ & \text { CCRE. CIJ. } \end{aligned}$	$\begin{gathered} \text { EDT: inf } \leq 0 . \\ \text { annen } \end{gathered}$	$\begin{aligned} & \text { PRIN. VAE. } \\ & \text { rUM. } \end{aligned}$
1	1.48270	0.78471	-0.10.982	0.50329	-J.3512\%	-0.07521	C. $\mathrm{Al} 306 \%$	5.06717
9	4.97639	C. 79248	-1.31511	0.45159	-2.67520	-0.51336	25.82?R5	0.21036
10	4.02753	1.55818	0.49493	0.26Ei76	1.05535	0.38320	14.74513	j.i2011
16	25426.13672	37206.60156	0.06001	-.030)1	1.23577	$0.26,715$	4.71856	0.03844
17	3.37931	1.32055	C. 20705	0.30910	0.66585	0.14813	3.88115	3.13362
18	574.17236	1537.29197	0.00008	0.00026	0.31924	0.07123	0.62417	0.00508
19	2.27241	C. 91988	0.11533	0.45616	0.25283	0.05644	0.11290	3.00408
20	2.27586	1.83023	0.12260	C. 2354.7	0.57023	0. 11555	0.05426	0.00777
8	3.20670	2.09386						

TABLE 173 RURAL
SAMPLE SIZE 29
DEPENDENT VARIABLE IS NOW NO. 7

- ivaly:Ij or variarise ron the multirif LINEAS REGRESSILR:

SIURCE IF VARIATIOA	O.F.	SUM UF SOUARES	$\begin{aligned} & \text { MCAN } \\ & \text { SMUARTS } \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{F} \\ . \mathrm{VAI} . \mathrm{U} \end{gathered}$	P
OUE TU REGKESSION.............	3	22.267?	2.78342	0.5121	
DEVIATIUN AROUT REGRESSIUN...	29	108.69820	5.43491		n.s.
TOTAL...	20	130.96550			


$\begin{aligned} & \text { VARIAHLE } \\ & \text { NU. } \end{aligned}$	H+AN	$\begin{aligned} & \text { STC. } \\ & \text { IIVIATION } \end{aligned}$	RTG. CIIFFR.	$\begin{aligned} & \text { ETU.CFFGR } \\ & \text { OF EfC.COF } \end{aligned}$	$\begin{aligned} & \text { COYPUTfit } \\ & \text { TVAl.UF } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { PnRTIAL } \\ & \text { rnkK. CIIE. } \end{aligned}$	$\begin{gathered} \text { Sum it SO. } \\ \text { Ancin } \\ \hline \end{gathered}$	$\begin{aligned} & \text { PW!lP. VAF. } \\ & \text { CIM. } \end{aligned}$
1	1.48276	0.78471	-0.39235	0.42509	-0.02799	-0.13) 0	0.71751	J.00548
9	4.97680	0.79248	-1).15418	0.61033	-0.20177	-10.06732	1.59700.	0.01221
10	4.02758	1.55818	C. 13284	C. 33114	0.40110	0.0533	4.46922	1.03413
16	25426. 13672	37206,60156	0.00002	0.0 conl	1.31767	0.29486	7.04478	0.05379
17	3.37931	1.32055	-0.06747	0.34376	-0.17537	-0.0392	0.08645	2.006h6
18	574.17236	1537.29199	C.0CO14	C. 0.103 ?	0.44763	C.09 069	1.37494	0.01050
19	2.27241	0.91988	-0.07014	0.56 .534	-0.1-1.85	-0.0. 768	0.21651	0.00165
20	2.27586	1.8302. 3	C. 32.629	0.29259	1.11518	0.24195	6.75897	2).05161
7	3.70552	2.16272						



TABLE 175 RURAL KEY 2
SAMPLE SIZE 29
DEPENDENT VARIABLE IS NOW NO. 5 analysis no vaflance for the multiple linear rigression


TOTAL... $28 \quad 111.03467$

$\begin{aligned} & \text { VARI ABLE } \\ & \text { NO. } \end{aligned}$	E MEAN	$\begin{aligned} & \text { STRO } \\ & \text { QFVIATION } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { REG. } \\ & \text { COFFF. } \end{aligned}$	$\begin{aligned} & \text { STO.FERUK } \\ & \text { UF RFG..CIJE. } \end{aligned}$	CIMPJTEO   TVALUF	$\begin{aligned} & \text { PARTIAL } \\ & \text { Ciff. COE. } \end{aligned}$	$\begin{gathered} \text { seju lir So. } \\ \text { anirn } \end{gathered}$	$\begin{aligned} & \text { م\&UP. VAR. } \\ & \text { SUM. } \end{aligned}$
1	1.48276	C.78471	0.00972	0.2 ¢728	0.33636	0.00913	0.00248	).00002
9	4.97689	0.79748	-0.51248	0.26797	-1.96372	-0.40236	1.17033	0.01054
10	4.32758	1.55818	1.09042	0.14162	7.69987	0.66473	R6. 10298	1.78176
16	25426.13672	37236.60156	0.00001	0.0 COCl	L.0220?	0.2,279	0.67552	0.00618
17	3.37931	1.32C55	-0.05J30	0.16409	-0.30054	-U.Jun3.	0.50467	1.00454
18	574.17236	1537.29199	-0.00007	0.00014	-3.53614	-0.11303	0.48890	0.00440
19	2.27241	0.91988	-0.22687	0.24216	-0.936il6	-0.203J4	0.44736	9.00403
20	2.27586	1.8307?	0.12917	0.12511	1.03826	0.22594	$1.08,913$	0.00063
5	5.41379	1.99136						

TABLE 176 RURAL KEY 2


VARIABLE NU.	MEAN	$\begin{gathered} \text { STO. } \\ \text { GRVIATIUN } \end{gathered}$	$\begin{aligned} & \text { REG. } \\ & \text { COFFF. } \end{aligned}$	$\begin{aligned} & \text { STIJEFKACR } \\ & \text { OF RFG.COE. } \end{aligned}$	CRypulto   T Valut	$\begin{aligned} & \text { minithl } \\ & \text { ris\%. cur. } \end{aligned}$	$\begin{aligned} & \text { डTM } \\ & \text { An ifn } \end{aligned}$	$\begin{aligned} & \text { FRBP. VAF. } \\ & \text { CIM. } \end{aligned}$
1	1.48276	C.78471	-0.3115	0.50566	-0.61612	-0.13443	¢. $\overline{\text { RCOU }}$	$0.0{ }^{2} 6^{2}$
9	4.97689	0.79246	-C. 51117	0.4937 ?	-1.03535	-0.22.555	1.98343	0.010990
10	4.02758	1.55618	0.94143	0.26772	3.51570	$0.6 \mathrm{isin4}$	66.46413	0.41576
16	25426.13672	37206.6C156	0.00001	0.00 Cl	0.76500	0.10861	2.71752	0.01697
17	3.37931	1.32055	-0.26140	0.31044	-0.8420.3	-0.195u3	6.05563	0.03788
18	574.17236	1537.29199	0.00005	0.00076	0.20593	C.0480.	0.00443	0.00003
19	2.27241	C.71988	-0.39525	0.45 El4	-0.136275	-0.10942	4.34214	0.02716
20	2.27536	1.2:3023	-0.16.502	0.236 .0 .9	-0.6.9718	-0.154.J3	1.72867	0.01081



TABLE 178 RURAL KEY 2

SAMPLE SIZE 29
DEPENDENT VARIABLE IS NOW NO. 2

COEFFICIENT OF DETERMINATION 0.3950 MULTIPLE CORR. COEFFICIENT



TABLE 179 TEACHERS KEY 11
SAMPLE SIZE 19
DEPENDENT VARIABLE IS NOW NO. 4



SCURCf. lit valiailea	L. 5 .	$\begin{array}{r} \text { SUA } \\ \text { siduaris } \\ \hline \end{array}$	$\begin{gathered} \text { ME.IN } \\ =(: i) P s[5 \end{gathered}$	VILUI	p
DUE TO FEGHESSI.IN.............	8	21.6356\%	2.704.is	1.0741	
DEVIATION GRIUUT R!:×イJ¢ICR...	10	26.153b2	2.615,4		n.s.
T!! TAL...	19	$\therefore 7.78047$			


$\begin{aligned} & \text { VARIAOLE } \\ & \text { N.?. } \end{aligned}$	MEAN	$\begin{gathered} \text { strisen } \\ \text { orvintion } \end{gathered}$	$\begin{aligned} & \text { nifig } \\ & \text { rlikff. } \end{aligned}$		$\begin{aligned} & \text { CIMFUTRG } \\ & \text { CVALUR } \end{aligned}$			$\begin{aligned} & \text { Prild. VAN. } \\ & \text { (lla. } \end{aligned}$
1	1.26316	0.65333	0.16372	C.76ヶ34	0.21578	C. 0602\%	0.83357	1.01734
2	5.10894	$1.532+3$	2, 014101	12.21417	1.7477\%	0.46208	1-6834?	0.23527
3	3.42154	1.92433	C. 37101	0.35177	1.45870	C.41987	3.63315	J.07604
10	2;410.31-5.1	(8.4.)1.16.)16	U. (19) Ju	0.3) 0.3	0.121 .77		P.401: 0	J.05028,
11	3.73947	1.97418	C. $\mathrm{H}_{4} \mathrm{C} 62$	0.4 .3633	1.73550	0.47913		3.20846
12	672.74727	1475.75464	0.0.013	C. JEC?A	7.454 .11	Q. 14:2<1	0.83750	). 111757
13	1.96326	1.0.725	0.7674 J	0.4274 ?	1.36.33?	0.26254	1.81435	$0.03 \mathrm{A07}$
14	1.984737	2. 2052	0.10225	C. 24140	0.42789	$0.133^{5.4}$	0.46.770	1.00470



TABLE 182 TEACHERS KEY 11


DEPENDENT VARIABLE IS NOW NO. 7 aNALYSIS OF VARIANGE FC:M Hif MLLTIPLE I.INFAF RTGRFSSIUN


| VAKIAELE | NEAN |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NO. |  |

TABLE 183 TEACHERS KEY 11


TABLE 185 TEACHERS KEY 10
SAMPLE SIZE 19
DEPENDEN'I VARIABLE IS NOW NO. 11
alyalysis of variance fen the multiple I INEAP KFGRESSICN

STOUREE CF VARIATTOK	D.F.	$\begin{aligned} & \text { SUM IF } \\ & \text { SCUARES } \end{aligned}$	$\begin{aligned} & \text { MEAN } \\ & \text { SOUAPES } \end{aligned}$	VALUF	p
DUE TO REGRESSION..............	8	16.0.8575	2.26122	1.36 \% 6	
DEVIATION ABOUT RFGRESSION...	10	16.33131	1.63313	,	n.s.
TOTAL...	18	34.42107			


$\begin{aligned} & \text { VARIARLE } \\ & \text { NO. } \end{aligned}$	NEAN	$\begin{aligned} & \text { STG. } \\ & \text { DEVIATIUN } \end{aligned}$	$\begin{aligned} & \text { PFG. } \\ & \text { CCEFFF. } \end{aligned}$	STO. ERKIP. OF RECi.CTIF.	COMPITEI 1 Value	$\begin{aligned} & \text { PartiAl } \\ & \text { copr. COE. } \end{aligned}$	$\begin{aligned} & \text { SIM iff } 50 . \\ & \text { AnNE } \end{aligned}$	$\begin{aligned} & \text { nEDP. VAF. } \\ & \text { CUM. } \end{aligned}$
1	1.26316	0.65338	-0.15544	0.59134	-0.20354	-0.0ajns	0.09229	0.00268
2	5.10 .394	1.53283	0.16266	0.24077	0.65520	0.202 Ha	2.6 .6996	0.07757
3	3.42158	1.92403	-0.07956	0.20448	-0.38906	-0.12211	2.30634	$0.06710{ }^{\circ}$
12	23410.31250	28451.10016	0.00001	0.00002	0.45352	0.14350	2.68551	0.07802
13	3.78947	1. 18418	0.63674	0.38430	1.65687	0.46411	5.57275	0.16190
14	672.94727	1475.75464	-0.00005	0.00022	-0.2.2181	-0.06997	0.04483	0.00130
15	1.96526	1.0 .4725	0.57369	0.33780	1.69030	0.47714	4.66381	0.13549
16	1.94737	2. 84652	0.03487	0.19108	0.18248	0.05761	0.05438	0.00150



$\begin{aligned} & \text { VARI A8LE } \\ & \text { NO. } \end{aligned}$	NEAN	$\begin{aligned} & \text { STCA } \\ & \text { QEVIATION } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { REG. } \\ & \text { COEFF. } \end{aligned}$	$\begin{aligned} & \text { STD. ERRUR } \\ & \text { OF RFG.CNE. } \end{aligned}$	COMPUTEC   T VALUE	$\begin{aligned} & \text { PARTIKL } \\ & \text { GORK. CUF. } \end{aligned}$	$\begin{gathered} \text { SUT: DJF } 50 . \\ \text { ANDE! } \end{gathered}$	$\begin{aligned} & \text { TPRTIP. VAK. } \\ & \text { CIM. } \end{aligned}$
1	1.26316	0.65338	0.26192	1.10939	0.23609	0.07445	0.00577	0.00007
2	5.10894	1.53283	0.15896	0.46576	0.34129	$0.107: 0$	5.07977	0.06246
3	3.42158	1.92403	C. 50081	0.38362	1.30547	0.38159	17.53030	5.14319
12	23416.31250	28451.16016	0.00000	0.00003	$0.08) 92$	0.02842	0.74869	0.00930
13	3.18947	1.08418	0.24083	0.72077	0.33406	0.10505	0.75607	0.60144
14	672.94727	1475.75464	-0.00021	0.00042	-0.47325	-0.15412	2.27016	0.02819
15	1.96526	1.04725	-0.35450	0.63373	-0.55938	-0.17419	1.5710	0.0186
16	1.44737	2.04052	-0.19659	0.35847	-0.54341	-0.17C日7	1.72875	$0.0214 \%$

TABLE I88 TEACHERS KEY 10
SAMPLE SIZE 19
COEFFICIENT OF DETERMINATION
0.5120

DEPENDENT VARIABLE IS NOW NO. 8
analysis of variance fop the pultiplf linear regressiun

LINEAR RFGRESSIUN					
SUURCE CF VARIATICK	C.f.	$\begin{aligned} & \text { SUM OF } \\ & \text { SOUARES } \end{aligned}$	$\begin{aligned} & \text { MEATI } \\ & \text { SOLIARES } \end{aligned}$	valur.	p
OUE TO REGRESSTCK.............	${ }^{8}$	50.445त1	E. 30621	1.3117	
OEVIATION ABOUT REGRESSITN...	10	48.07661	4.80766		n.s.
TDTAL...	18	98.52632			


$\begin{aligned} & \text { VAR IABLE } \\ & \text { NO. } \end{aligned}$	MEAN	$\begin{aligned} & \text { STD. } \\ & \text { OEVIATION } \end{aligned}$	$\begin{aligned} & \text { PEG. } \\ & \text { COCFF. } \end{aligned}$	$\begin{aligned} & \text { STD. दृROR } \\ & \text { OF PrG.CDE. } \end{aligned}$	CJMPUTED t value	$\begin{aligned} & \text { paryth } \\ & \text { culf. rif. } \end{aligned}$		$\begin{aligned} & \text { PFTIP. VAF. } \\ & \text { cuN. } \end{aligned}$
1	1.26316	0.65338	0.17223	1.01460	0.16975	0.0536	2.98572	0.03030
2	5.10894	1.53283	0.41140	0.42597	0.96590	0.29217	6.37238	0.06468
3	3.421 jd	1.92403	-0.15394	0.35385	-0.43876	-0.13743	6.08653	0.067 \%
12	23416.31250	28451.16016	c. 00005	0.00003	1.14 .726	$0.4840 \%$	15.04002	0.15265
13	3.78947	1.08418	-0.86707	0.65937	-1.31499	-0.383\%6	6.28825	0.063 BT
14	672.94727	1479.75464	0.00052	0.00338	1.34096	0. 39040	11.09663	0.11263
15	1.90526	1.04725	0.19106	0.57958	0.32965	0.10363	0.39128	0.00397
16	1.04737	2.04052	0.22125	0.32794	0.67486	0.20871	2.18957	0.02222



TABLE 190 TEACHERS KEY 10


TABLE 191 TEACHERS KEY 10


STURCE OF VARIATION	T.F.	SUM OF.	ME.NT	F	
		ShuARi:S	SQuaties	valut	p
DUE TO REGRESSITN............	8	37.668CI	4.7055	0.6817	p
OEVIATICN ABUUT REGRFSSICN...	10	69.06483	6.90438		n.s.

TOTAL... 18 106.73685 n.s.

$\begin{gathered} \hline \text { VARI ABLE } \\ \text { NU. } \end{gathered}$	MEAN	$\begin{aligned} & \text { STO. } \\ & \text { OEVIATION } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { REG. } \\ & \text { COEFI. } \end{aligned}$	STO.FRROK UF RFG.COE.	Crimpuren   T VALUE	$\begin{aligned} & \text { PARTIAI } \\ & \text { COMR. COF. } \end{aligned}$	$\begin{aligned} & \text { SiJf UF } \leq 0 . \\ & \text { ADIn\& } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { PFKIP. } \sqrt{A E} \\ & \text { C.IV. } \end{aligned}$
1	1.26316	0.65338	-0.39639	1.21610	-0.32595	-0.10252	7.0655	
2	5.10894	1.53283	0.3772 ?	0.51056	-0.73874	-0.72751	7.06558 17.2 .274 ?	0.06620 0.12393
3 12	3.42153 23416.31250	1.92403 28451.16016	C. 27670 -0.00001	0.42052	0.65799	0.20371	6.01620	0.05636
13	23416.71250	$\frac{28451.16016}{1.68418}$	-0.00001	0.00003	-0.29d22	-0.09389	0.16440	0.00154
14	672.94727	1475.75464	0.00010	0.00046	$-0.343 C 4$ 0.21967	-0.16925 0.06030	4.12711	0.03867
15	1.96526	1.04725	0.26741	0.69469	0.21967	0.06030	0.00732	0.00009
16	1.44737	2.0405 ?	-0.35640	0.39295	-0.90579	-0.27570	5.68184,	0.01290 0.05323

TABLE 192 TEACHERS KEY 10
SAMPLE SIZE 19 COEFFICIENT OF DETERMINATION 0. 3392
dependent Variable is now no. 4
MULTIPLE CORR. COE FFICIENT
0.5824


$\begin{gathered} \text { VARTABLE } \\ \text { ND. } \end{gathered}$	PEAN	$\begin{aligned} & \text { STW. } \\ & \text { DEVIATION } \end{aligned}$	$\begin{aligned} & \text { REG. } \\ & \text { COEFF. } \end{aligned}$		CATPOTFD   t valuf	$\begin{aligned} & \text { एगSTTML } \\ & \text { CIRD. CBE. } \end{aligned}$	$\begin{gathered} \text { SJM if } 30 . \\ \Delta \text { niben } \end{gathered}$	$\begin{aligned} & \text { PrJP. VAF. } \\ & \text { C.1Y4. } \end{aligned}$
- 1	1.26316	J. 65338	-C.77633	0.75034	-1.J3404	-0.350.6	0.02920	J.00073
2	5.10894	1.53283	0.02535	0.31502	J. JH048	0.02544	0.01036	0.00076
3	3.42153	1.72403	-0.06767	U. 2596		-0.033219	1.45115	5.03647
12	23416.31250	28451.16C16	0.00003	C.0600?	1.547)?	0.4490.)	1.27414	0.03204
13	3.78'34	1.3 14 18	-0.60551	0.48763	-1.311!4	-0.3655	2.67168	0.06775
14	672.94727	1475.75444	-0.00036	$0 .(00023$	$-1.26779$	-0. 27262	3. 09625	0.07782
15	1.96526	1.04725	0.45635	0.44863	1.06458	0.3190 .3	2.65273	0.06667
16	1.94 .737	2.04052	0.22723	0.242 .5	0.93721	0.28415	2.30955	0.05804
4	4.10520	1.48678						

TABLE 193 TEACHERS KEY 9
SAMPLE SIZE 19
DERENDENT VARIABLE IS NOW NO. 11
analyjis of variance fin thf. multiplf $\frac{\text { SOURCE CF VARIATIUA LINEAR PFGRFSSIUN }}{\text { C.F. }}$

SOURCE CF VARIATIUA	C.F.	$\begin{aligned} & \text { SIIM OF } \\ & \text { SQUARES } \end{aligned}$	$\begin{aligned} & \text { MFAN } \\ & \text { SOUARE: } \end{aligned}$	valuf	p
OJE TU REGRESSIO'J	8	20.67261	2.58408	O.8COL	
DEVIATINN ARMUT REGRFSSICN...	10	32.27490	3.22719		n.s.
TOTAL...	18	52.94761			


$\begin{gathered} \text { VARIABLE } \\ \text { ND.. } \\ \hline \end{gathered}$	MFAN	$\begin{gathered} \text { STD. } \\ \text { OEVINTIGN } \\ \hline \end{gathered}$	$\begin{aligned} & \text { HEG. } \\ & \text { CI:FFF. } \end{aligned}$		$\begin{aligned} & \text { COYPUTFO } \\ & \text { i VALUF } \\ & \hline \end{aligned}$	$\begin{gathered} \text { cARTINL } \\ \text { CGOF. CUF. } \end{gathered}$	$\begin{gathered} \text { STM Clif } \\ \text { annfn } \\ \hline \end{gathered}$	$\begin{aligned} & \text { PRIP. VAD. } \\ & \text { CliM. } \end{aligned}$
1	1.26316	0.65338	-0.56482	0.83131	-1).67944	-0.21006	10.07066	0.00133
9	5.10994	1.53283	0.17714	0.34001	0.50755	U. 15841	0.19965	0.00377
10	3.42158	1.92403	-0.00814	0.28746	-0.03041	-0.00962	1.54142	0.02911
12	23416.31250	28451.16016	0.00002	$0 . C \cdot C .002$	1.14450	0.34032	3.37938	0.06383
13	2.73947	1.C8418	-0. 38792	0.54025	-0.71745	-0.22137	$1.0972^{\circ}$	0.02072
14	672.94727	1475.75464	-0.00010	0.00031	-0.301 32	-0.09501	0.18068	0.00341
15	1.96526	1.04725	0.99566	0.47438	2.046 n6	0.5526 .7	14.0625?	0.26559
16	1.94737	2.04052	0.05616	0.268 Cl	0.20907	0.06507	0.14107	0.00266
11	4.05263	1.71509						

TABLE 194 TEACHERS KEY 9


TABLE 195 TEACHERS KEY 9


TABLE 197 TEACHERS KEY 9
SAMPLE SIZE 19
DEPENDENT VARIABLE IS NOW NO. 5
analysis in vafinnce fins titl mideifir

SOURCE ci variatiolin			D.F.SUM OF   SU1OLFS		$\begin{gathered} \text { MFAN } \\ \text { S:JUARES } \end{gathered}$	$\begin{gathered} \text { Vilitr } \end{gathered}$	p	
DUE TU REGRESSICN............... DEVIATION ABRUT REGRESSICN...			8	59.21829	7.40229	2.9743	n.s.	
			$10 \quad 24$	18718	$2.4847 ?$			
TOTAL ... 18				84.10547				
VARIABLE	MEAN	$\begin{aligned} & \text { STO. } \\ & \text { DEVIATHO } \end{aligned}$	$\begin{aligned} & \text { FEG. } \\ & \text { CDEFR. } \end{aligned}$	STO.CRRIR OF REG.Cur	co.lputen	Paritim		$\begin{aligned} & \text { PPriP. VAR. } \\ & \text { rum. } \end{aligned}$
NL.					t valur	rniki (1it.		
1	1.26316	C.C5338	-C.37837	0.72949	-0.51900	-0.16195	4.05047	0.04816
9	5.103184	1.523283	-0.41141	0.306143	-1.34241	$-6.38076$	10.37 n 19	0.12341
10	3.42158	1.72403	0.52215	0.25 .343	2.06150	0.5441	16.65493	0.20040
12	23410.2125 .3	28451.16016	C. 00003	0.0 .0072	1.35170	0.30315	4.17841	n.04968
13	3.78947	1.C8418	0.6 .3070	$0.474 \% 1$	1.43485	0.41320	4.35429	9.11127
14	672.94727	1475.75464	-0.0.0017	0.00023	-0.62759	-0.1446.6	0.17697	0.00151
15	1.96526	1.C4725	-6.4754 7	0.417.00	-1.14320	-0.3391.	4.06536	0.04834
16	1.04737	?.0405\%	0.47772	0.23597	2.02529	0.59933	10.20823	$0.121 \%$

COE FFICIENT OF DETERMINATION MULTIPLE CORR. COEFFICIENT
0.7807
0.8836

DEPENDENT VARIABLE IS NOW NO. 4
aNALYSIS IF VIRIANC.E FRR THE 阭TIPLF LINEAR aEGPESSIUN

SUURCE CF VIRTATIOK	D.F.	$\begin{aligned} & \text { SUW OF } \\ & \text { SQUAQES } \end{aligned}$	$\begin{aligned} & \text { MEGN } \\ & \text { SQUARES } \end{aligned}$	VALUE	P
OUE TO REGRESSILN.............. OEVIATION ABOUT REGRESSICM...	10	$\begin{array}{r} 114.97578 \\ 33.70844 \\ \hline \end{array}$	$\begin{array}{r} 14.99697 \\ 3.37034 \\ \hline \end{array}$	4.4493	$<05$

ICTil... 10 153.68422

$\begin{aligned} & \text { VARTAHLE } \\ & \text { NO. } \end{aligned}$	NEAN	$\begin{aligned} & \text { STE: } \\ & \text { OFVIATIOR } \end{aligned}$	$\begin{aligned} & \text { REGO } \\ & \text { CDESF. } \end{aligned}$	$\begin{aligned} & \text { STO.FRDGR } \\ & \text { DF REG. ROE. } \end{aligned}$	$\begin{aligned} & \text { COAPUTEO } \\ & \text { IVALIJE } \end{aligned}$	$\begin{aligned} & \text { PARTTIL } \\ & \text { COFR. } \operatorname{CNE} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { STM OF STM } \\ & \text { ANDEO } \end{aligned}$	$\begin{aligned} & \text { TJP. Vä̈:- } \\ & \text { rIJM. } \end{aligned}$
1	1.26316	0.65333	-2.83715	J.84957	$-3.34 J 22$	-0.72619	5.19104	0.03378
9	5.10894	1.53283	0.50909	0.35669	1.42730	0.41139	0.61535	1.00400
10	3.42158	1.92403	0.07 H50	3.29315	0.20121	0.07142 J	15.43426	4.10443
12	23416.91250	2:1451.16016	0.00007	$0.0000 ?$	3.43601	0.73581	24.62555	0.16023
13	3.18947	1.C0418	0.10577	0.53212	0.19157	0.05 .147	5.71445	0.03718
14	672.94727	1475.75464	0.00010	0.00032	0.32334	0.10138	5.18329	0.03373
15	1.76526	1.04725	-0.14584	0.4 E531	-0.30050	-0.0946:	1.16503	0.00758
16	1.94737	2.04052	1.17775	0.27451	4.29034	0.80497	62.04697	0.40373

TABLE 199 TEACHERS KEY 9

## SAMPLE SIZE 19

DEPENDENT VARIABLE IS NOW NO. 3
inalysis of variance für the multifle LINEAR REGRESSION


TABLE 200 TEACHERS KEY 9
SAMPLE SIZE 19
COEFFICIENT OF DETERMINATION
0.6653
MULTIPLE CORR. COEFFICIENT
0.8157
DEPENDENT VARIABLE IS NOW NO. 2
analysis of variance for the multiple

SOURCE Or varlation	D.F.	SUM Tif SQUARES	MFAN SQUARES	VALUE	p
DUE TO REGRESSTON..............	8	17.43927	2.17ysi	2.4845	
DEVIATION ABCUT REGRESSION...	10	8.77386	0.87737		n.s.
rotal...	18	26.21313			


$\begin{aligned} & \text { VARIABIEE } \\ & \text { NO. } \end{aligned}$	NEAN	$\begin{aligned} & \text { STO } \\ & \text { OEVIATION } \end{aligned}$	$\begin{aligned} & \text { REG. } \\ & \text { CGEFF. } \end{aligned}$	STO.ERROR OF REG.CNE	$\begin{aligned} & \text { COMPUTED } \\ & \text { T VALUE } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { PARTIAL } \\ & \text { COFR. CIJF. } \end{aligned}$	$\begin{gathered} \hline \text { SU4 OF SQ. } \\ \text { ANDFD } \\ \hline \end{gathered}$	$\begin{gathered} \text { PROP. VAR. } \\ \text { CUM. } \end{gathered}$
1	1.26316	0.65338	-0.15975	0.43344	-0.36856	-0.11576	1.33132	0.05079
9	5.1 c094	1.53283	0.27337	0.18197	1.50225	0.42910	0.73509	0.02804
10	3.42158	1.92403	-0.34812	0.14988	-2.32265	-0.59197	0.31879	0.01216
12	23416.31250	28451.16016	0.00003	0.00001	3.06243	0.69568	3.99435	0.15238
13	3.78947	1.c8418	-0.70875	0.28168	-2.51513	-0.62263	4.27776	0.16319
14	672.94727	1475.75464	-0.00014	C. 00016	-0.83502	-0.25531	0.31083	0.01186
15	1.96526	1.04725	0.63543	0.24760	2.56640	0.63016	5.49004	0.20944
16	1.94737	2.040¢2	0.14810	0.14005	1.05747	$0.31 \% 14$	0.98113	0.03743



TABLE 202 STUDENTS KEY 8


TABLE 203 STUDENTS KEY 7
SAMPLE SIZE 16
DEPENDENT VARLABLE IS NOW NO． 8
 LIMRAR REDRESSIO：

STIIRCF OF VACIATION	$\frac{r^{\prime} \text { ．}}{}$	Siln nf	MFAM	F	
		COULADFS	Spllaris	VAClif	p
DIIF TK PETSRFSSTNN．．．．．．．．．．．．．	A	30.17096	3.77137	n．pn？	
OFVIATİN ARDUT RFGPFSSION．．．	7	29.57901.	4.2755 A	の．かの？	n．s．
TOTAI．．．	15	59．75000			


| VARIARLF | MFAN |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NO． |  |

SAMPLE SIRE 16
DEPENDENT VARIABLE IS NOW NO. 7
ANALYSIS CIF VAOIANTF FOE THI MILITIDIF L-NAFAE QFFQRESTOR:


TABLE 205 STUDENTS KEY 7
SAMPLE SIZE 16
DEPFNDENT VARLABLE IS NOW NO. 6
 1/ARAR RE.cRESESIGA

SDIJRCE DF GRQIATICN	n. $\mathrm{r}_{\text {. }}$	stm 0 F	$\begin{aligned} & \text { MEAN } \\ & \text { SQIIAPT.S } \end{aligned}$	$\begin{gathered} \text { r } \\ \text { VALIIF } \end{gathered}$	p
		Splinprs			
DIE TM Refiefessinn.	8	33.77510	4.15939	1.0007	
DEVIATION ABOUT REGRESSIONe.e	7	26.47490	3.78213		n.s.
tntal...	15	59.75000			


$\begin{gathered} \hline \text { VARIARLE } \\ \quad N n_{2} \end{gathered}$	MP AN	$\begin{gathered} \text { STO. } \\ \text { QEVIATION } \end{gathered}$	$\begin{aligned} & \text { REf, } \\ & \text { r.OFPF. } \end{aligned}$	$\begin{aligned} & \text { STD.fOPNR } \\ & \text { GF RERCCE. } \end{aligned}$	Compitifo   T VALIF	$\begin{aligned} & \text { PADTIAL } \\ & \text { r.ODK, COF. } \end{aligned}$	$\begin{gathered} \text { sim nf SC. } \\ \text { AnDED } \end{gathered}$	$\begin{aligned} & \text { NFOP. VAD. } \\ & \text { CUM. } \end{aligned}$
1	1.00000	0.0	0.0	1.94477	0.0	-n.0	0.0	0.0
2.	4.96082	1.66834	-0.0.95582	0.90462	-2.05658	-0.37097	0.07409	0.20124
3	4.13375	1.25217	1.65130	1.36828	1.20684	n.11501	6.22702	0.10422
9	2.25000	1.73205	0.42432	0.40220	1.05500	0.37039	14.31200	0.23953
10	2.25000	1.94936	-0.4936R	0.34617	-1.42609	-0.177448	11.40700	0.19091
11	2.00000	1.26491	0.27218	0.61179	C.44489	n. 16583	0.41925	0.00702
12	0.01250	0.01770	-21.07112	44.87233	-0.17010	-n.17474	0.63590	0.01390
13	0.0	0.0	0.0	1.34477	0.0	-0.0	0.0	00
6	2.17500	1.09583						

TABLE 206 STUDENTS KEY 7
SAMPLE SIZE 16
DEPENDENT VARIABLE IS NOW NO. 5
MHAIYEIE NF VARIMNIC TRE THI WIITIMI LINFAR RFGEFSSITN:


COEFFICIENT OF DETERMINATION
0.6958

COEFFICIENT OF DEIERMINATION
0.5569 MULTIPLE CORR. COEFFICIENT 0.5463
$\qquad$
COEFFICIENT OF DETERMINATION 0.4453 MULTIPLE CORR. COEFFICIENT 0.6673


TABLE 209 STUDENTS KEY 6
SAMPLE SIZE 16
DEPENDENT VARIABLE IS NOW NO. 7
anAlysis of variancf fin thf mitctole

SOIIPCF TF VARIATITN	n.F.	$\begin{aligned} & \text { SUM } \operatorname{CIF} \\ & \text { SOUAR ES } \\ & \hline \end{aligned}$	WEAT SOIIARES	VAlUE	P
OLJF TE RFCRFSSICN.............	A	3.27734	0.40967	n.3?99	
DEVIATION APDUT DES?ESSIDNEE	7	8.72266	1.246 .39		n.s.
THTAL...	15	12.00000			


$\begin{aligned} & \text { VAQ IAALE } \\ & \text { NO. } \end{aligned}$	4FAN	$\begin{aligned} & \text { sTח. } \\ & \text { DEVIATION } \end{aligned}$	$\begin{aligned} & \text { PEf, } \\ & \text { COEFF. } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { STC.EPQRR } \\ & \text { CR PEG.CQE. } \end{aligned}$	$\begin{aligned} & \text { Cruoliten } \\ & \text { ! valuf } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { PAOTAA! } \\ & \text { CnOP. CNF } \end{aligned}$	$\begin{gathered} \text { SIM } \operatorname{CFF} \text { SO. } \\ A O D E D \end{gathered}$	$\begin{gathered} \text { VRODO. VAQ. } \\ \text { CUM. } \end{gathered}$
1	2.90000	0.73030	-0.23203	0.46636	-0.49701	-0.19462	0.12500	0.01042
2	5. 26.062	0.59210	0.238875	0.42793	0.10719	-104048	$0 \cdot 1154$	0.00096
3	4.25000	1.29755	-0.20514	0.27388	-0.74902	-0.2724.	0.89398	?. 27450
9	60164.75000	721.85.25000	0.00000	0.00921	0.93372	0.30055	0.87697	0.07308
10	3.007150	1.36676	-0.0226n	0.39831	-7.75870	-0.02109	$0.2319 ?$	7.0193?
11	0.22000	0.01633	-0.50601	26.71310	-0. 91394	-C. 30716	0.03191	0.00266
$1 ?$	2. 76875	0.47207	0.49364	0.67237	2.69903	0.75510	0.727 Am	9.06066
13	2.43750	0.72744	-0.30588	O,5551月	-0.59725	-2. 70787	0.37825	202157
7	4.50000	0.89443						

TABLE 210 STUDENTS KEY 6
SAMPLE SIZE
16
COEFFICIENT＇OF DETERMINATION
0.5942

DEPENDENT VARIABLE IS NOW NO． 6
MULTLPLE CORR．COEFFICIENT
0.7708

AHILYSIS CF VAQIAHICF FRO THF MILTIDIF
LINEAS PFGRFSSIDN

SMIRC．f NE VAQIATINN	1，F．	914 0 F	4FAV	r	
		SOUARES	Smilarce	VAllif	P
NIIE．TN RFTRESSICN．．．．．．．．．．．．．．	A	23.12640	2．897） 5	1．2R1？	
DFVIATIMN ARCijt periofeciolm．．．	7	15.82110	2，75730		n．s．
TחTAL．．．	15	39．93750			


$\begin{aligned} & \text { VARIARIF } \\ & \text { NO. } \end{aligned}$	Vrı介：	$\begin{gathered} \text { sTR. } \\ \text { مcivintian } \end{gathered}$	$\begin{aligned} & \text { Rrf, } \\ & \text { COEFE. } \end{aligned}$	$\begin{aligned} & \text { singraRnt } \\ & \text { or grecenen } \end{aligned}$	  1 V11．115	$\begin{aligned} & \text { pADTlCI } \\ & \text { CORO COE } \end{aligned}$		$\begin{aligned} & \text { porlo. VAR. } \\ & \text { clut. } \end{aligned}$
1	2．500n\％	0.73030	－n．19225	0.6 .7936	－6．29704	－n．1CRCs	3.78175	0.04711
2	$5.2606,2$	0.59210	－1．26048	1.11433	－1．12115	－0．30211	4.90946	2 l 260 O
3	4.26000	1.27755	7.74835	O．？ARE2	2.03014	0.60876	8.96755	0.73031
9	60164．750n	72185．25000	0 00001	20.0021	0.79554	0.28705	0.35230	0．00cons
10	3.00000	1.36676	0． 22936	0.52264	0．6282R	C． 27105	ก．ก0nou	$0.000 n 0$
11	0．020nn	0.01633	－24．42247	35．95370	－0．6．6728	－0．24888	$0.2897 \%$	0.00744
17	2.76975	0.47209	0．56i，98	n．03755	n．6079n	n． 72393	1.27876	n．03？${ }^{\text {a }}$
13	2.43750	0.72744	－0．n390\％	0.74732	－1．35537	－chengo	3 Sc	On9136
6	4.06250	． 61116						

TABLE 211 STUDENTS KEY 6
SAMPLE SIZE 16
DEPENDENT VARIABLE IS NOW NO． 5
COEFFICIENT OF DETERMINATION
0.7138
avalysis mf Vaglanef＝ne the uill trir
MULTIPLE CORR．COEFFICIENT
0.8449

SOIIPC．F ILP VADIATION	n．F．	$\begin{array}{r} \text { SHN OF } \\ \text { COUADRS } \\ \hline \end{array}$	$\begin{aligned} & \text { MPFAN } \\ & \text { SDIIAOPE } \\ & \hline \end{aligned}$	valler	p
DIIE TH RFGDESEITN．．．．．．．．．．．．．	$\square$	45.68705	5.71026	？．10？1	
	7	18.31795	2.61695		n．s．
tחtal．．．	15	64．0000n			


$\begin{aligned} & \text { VARI APLF } \\ & \text { N?. } \end{aligned}$	Y「AN	$\begin{aligned} \text { sTn. } \\ \text { Exiñon } \end{aligned}$		$\begin{aligned} & \text { STH.FROME } \\ & \text { OF REGNCOE } \end{aligned}$	（TVMDITFI   I yalle	$\begin{aligned} & \text { FANTIAL } \\ & \text { COLG. CRER } \end{aligned}$	$\begin{gathered} \text { sim nt } 50 . \\ \text { nnon } \\ \hline \end{gathered}$	$\begin{aligned} & \text { rROP. VAR. } \\ & \text { Rubik. } \end{aligned}$
1	2.50000	0．73．3n	n．2．729	0．1，765．5	0.33596	0.17507	8．0nnmo	$0.1759 n$
2	5.26062	0.59310	－0．64029	1－1crai	－0．533166	－0．10773	2．6072n	0 00076
3	4.26000	$1.29755^{\circ}$	1．16245	0.3 ¢689	2．9？4RA	C．74？06	14．3327n	0．27375
9	60154．75nnn	72165．25000	－0．00000	0， 0 nonl	－0．0．6783	－n， 2120	8.52752	0.13324
10	3．00000	1.36626	C． 26446	0.56 .777	0.44984	n．17489	1.10701	0.01731
11	0．02007	0.161633	－74．55150	38.71136	－1．33183	－0．5anto	9.27962	n．12935
17	2．76875	0.47209	－0．44882	1.00419	－0．4470n	－n．16659	0.30158	0.00471
13	2.43750	0.72744	－0．74056	$0 \times 845$	－0．93263	－0．121816	2.52666	0.03948
5	4.50000	2.06559						

TABLE 212 STUDENTS KEY 6

SAMPLE SIZE 16
DEPENDENT VARIABLE IS NOW NO． 4

COEFFICIENT OF DETERMINATION 0.6694 MULTIPLE CORR．COEFFICIENT 0.8182

ANALYEIS NC VAPIAMIRE FRR TUF MIILTIMIF


$\begin{gathered} \hline \text { VARIARLF } \\ \quad N R . \end{gathered}$	vestit		$\begin{aligned} & \text { RFG. } \\ & \text { roncr } \end{aligned}$	c-n.cosn:   ne zerurne	r．nypitra   I V：1－1／5	$\begin{gathered} \text { Fs:OTIMI } \\ \text { rione CnE } \\ \hline \end{gathered}$	SIMMAFSO． Annen	PROD．VAR． cum．
1	2．50nno	n．73n3n	－0．336．7n	0.47676	－0．71764．3	－0．25707	3.78175	n．13791
2	$5.2604 ?$	0.59210	$-1.10297$	0.8 年乐75	$-1.30409$	$-0.44211$	2.31471	0.10623
3	$4.76017 n$	1.29755	0.7 cosin	0.27938	2.59096	C．A7375	10.90355	n．3＇74，
9	6016k． 7500 n	72105．25900	0 0．7000	0．10171	0 014045	0.17146	n． 13954	0.00505
10	3．0nnon	1．366？6	0.16656	0.395 .76	0.43964	0.1570 ？	C． 219 \％	n．0ח795
11	0.0 Oncn	2，016，33	－4，75443	27．23050	－0．13180	－0．01．25？		n， 0 nnls
12	2.76975	$7.472 \times 7$	－7． 12233	0.7 cs 5	－0．03141	－0．71195	0.00125	0.00305
13	2.43750	0.73714	－0．31707	0.56612	－0．550n9	－0ッププロフ	0.608630	C．Ol¢91

TABLE 213 STUDENTS KEY 5
SAMPLE SIZE 16
16
DEPENDENT VARIABLE IS NOW NO． 8
ANALYSIS OF VADIANCE FOE THF MIITIDIF

SMlarc nf VAqIITINN	П．F．	$\begin{aligned} & \text { SUM तF } \\ & \text { sOUSRIS } \end{aligned}$	$\begin{aligned} & \text { MFAN } \\ & \text { SOHADES } \end{aligned}$	VAllif	p
DIJF TA PFGRESCITNN．．．．．．．．．．．	ด	23．65：787	？ 0553	1.7954	
DEVIATION AROIT OEGRESSIMA．es	7	16．00911	2，20937		n．s．
「П「AL．．．	15	$39.7500 r$			


$\begin{gathered} \text { VAQIAALF } \\ \text { ND. } \end{gathered}$	NS．AN	$\begin{gathered} \text { ctn. } \\ \text { nevintimn } \end{gathered}$	orif. CDEIE	$\begin{aligned} & \text { STC.ERONE } \\ & \text { re REGucNE } \end{aligned}$	$\begin{aligned} & \text { cnvoliren } \\ & \text { ivalue } \end{aligned}$	$\begin{aligned} & \text { DADTIAI } \\ & \text { crenecry. } \end{aligned}$	cim Cr © O Aroben	runn．VAQ． Cllas．
1	1.00007	C．0	0.0	1．51057	n．？	－0．0	0.0	C．0
4	4.96067	1.66934	1．18329	0.71275	1．74076	0.59147	0． 30264	0.00761
5	4.13375	1．25212	－1．9「の77	1．016，44	－1．9287n	－ $0.588 \mathrm{CH5}$	15．0406A	0.37838
9	16540．18750	44106.75701	－0．00001	0．conol	－0．58341	－C．21534	1．3864？	0.03498
10	2．750n	1.732 3 5	－ 0.12797	0.2734.	－0．44750	－0．1740\％	1．155A5	0.07 กna
11	1697．77590	6276.62197	0.90905	C．）${ }^{\text {an }}$	0.109894	C．1450n	2．70479	O．0banz
17	2．？5nk？	の．6P875	－0．60774	1．n13A\％	－0．69074	－n．74724	n．06133	0.00154
13	1,25000	1.77012	0.61304	$0.3616 \%$	1014207	0．39332	2．99270	0.07546
9	4.62500	1．67．798						

TABLE 214 STUDENTS KEY 5
SAMPLE SIZE 16
16
DEPENDENT VARIABLE IS NOW NO． 7
$\begin{array}{ll}\text { COEFFICIENT OF DETERMINATION } & 0.6998 \\ \text { MULTIPLE CORR．COEFFICIENT } & 0.8365\end{array}$
0.8365



TABLE 215 STUDENTS KEY 5
SAMPLE SIZE 16
DEPENDENT VARIABLE IS NOW NO． 6
AnAl，Yete ne vidaner row vill Nilltimit linear pegressigh

CMIREF OF VADIATICV	n．r．	$\begin{aligned} & \text { SIIN nf } \\ & \text { SHIARCe } \end{aligned}$	$\begin{aligned} & \text { MCAN } \\ & \text { SGUAPES } \end{aligned}$	Valiff	$\rho$
Ditre TO QFFigFeelone	8	74.37415	4．？．7．77	1.3 AG7	
DEVIATINM ARTIV QEGRFSPI ON．．．	7	23．37595	3．330\％1		n．s．
Tnrsl．．．	15	57.75 ก00			


VARIARTF	4 An	$\begin{gathered} \text { cin. } \\ \text { CCVIATIIOR } \\ \hline \end{gathered}$	$\begin{aligned} & \text { orf. } \\ & \text { reme. } \end{aligned}$	$\begin{aligned} & \text { stn.rizond } \\ & \text { nf DFrier.nf. } \end{aligned}$	rruplifen   TValuf			nonn．VAR． r！！
5	1．0nnmen	n．0	¢．n	1．8374	C．n	－C．n	n．r	0.0
4	4.96062	1.60834	1．6？510	c． 35825	1．01515	0.58435	2.79958	0.04948
	4.13375	1．2521？	－7．29689	1.27479	－1．87533	－n．57A78	3． 9.9054	0.06787
9	1654n．1875n	4.4106 .75781	－r．0enoc	0．nonor	－0．26995	－0．1015n	2．01219	0.03536
10	2.25007	1.73 7n5	－0．20664	0.37954	－0．6？646	－0．23041	0.09199	0.015159
11	1697.37509	$6226.6210 n$	－0：0r00：	0.30 nl \％	－n．67293	－0．240，5．0	13.45168	0.23793
17	$2.2506 ?$	0．68475	1.51961	1.22145	1.37598	C．448n5	10.96604	0.19990
13	1.25900	1.77012	0.25364	0.12579	0.53223	¢， 21485	1.13122	0.01959



TABLE 217 STUDENTS KEY 5


TABLE 218 STUDENTS KEY 4
SAMPLE SIZE 16 COEFFICIENT OF DETERMINATION 0.2477
DEPENDENT VARLABLE IS NOW NO． 6 MULTIPLE CORR，COEFFICIENT 0.4976


SOlJPC：nf Varjatinn	N．${ }^{\text {c }}$	$\begin{aligned} & \text { SIJ nr } \\ & \text { Criling.fe } \end{aligned}$	$\begin{aligned} & \text { MFAN } \\ & \text { SOIIAEF } \end{aligned}$	VAllif	p
DIIC TH PFCRESCITN．	A	27．n43\％1．	3．63548	n．pap？	
	7	89，3534\％	12．62125		n．s．
TпTA1．．．．	15	117.43750			


$\begin{aligned} & \text { VAQIARLF } \\ & \text { Nal } \end{aligned}$	MrAN	$\begin{gathered} \text { cTntinn } \\ \text { neviting } \end{gathered}$	$\begin{aligned} & \text { bre. } \\ & \text { rinere } \end{aligned}$	cTn。rivono IF ocerarac	rigaiditan   T vallif	FADTIAI． cion cnc	$\text { cIIM NF } 90$ Annin	$\begin{gathered} \text { pann. VAR. } \\ \text { cuM, } \end{gathered}$
1	$1 . m 001$	ก．0	n． 0	3．5．5．74	0.0	－）． 0	ก．0	0.0
7	4.96067	$1.1,6974$	0．riflll	1.66 .156	ก．33430	0.12166	ก．90502	0.00771
9	4.13375	1．7521？	－0．6）际	2．3R119	－0．27907	－n．10974	0.45327	0.003 A6
9	16560．18750	44105.75781	Q．0non2	0．n0102	0.55022	11．2n3f．1	8．13739	n．0．0232
10	2．350nn	1.73205	O． 31100	0． 6,1 ORt，	$0.4955 ?$	0．1fnco	N．5991？	$0.0737 ?$
11	1697．3750n	6226.62107	－nonons	0．0ヘ122	－0．27760	－0．101．34	6.24 .222	0，95215．
12	2． 2506 ？	O．69175	0．94416	2． 37447	0.34760	0.1491 .1	4.10662	0.03497
13	1.25000	1.77017	O． 10083	0.94774	0．725？7	O． 014	0.64031	n， 00545


SAMPLE SIZE 16 DE PENDENT VARLABLE IS NOW   ANALYSIC IF V	laver RESR	THE RUIT	COEFFICIENT OF DETERMINATION MULTIPLE CORR. COEFFICIENT			$\begin{aligned} & 0.4056 \\ & 0.6368 \end{aligned}$
SCIIRC.F TF VARIATITA	n.F.	$\begin{aligned} & \text { SUW nF } \\ & \text { SDUAPFS } \end{aligned}$	$\begin{aligned} & \text { MEAN } \\ & \text { SOUAOES } \end{aligned}$	$\begin{gathered} f \\ \text { valitie } \end{gathered}$	p	
DIJF TR RFFIRESCITN.............	A	55.86714	6.78339	5.5970		
DEVIATION.ASQUIT PSGRESSION...	7	81.88286	$11.6 n 755$		n.s.	
rntal...	15	137.75000				


$\begin{gathered} \hline \text { VAQ IARLE } \\ \text { N?. } \end{gathered}$	MF AN	$\begin{aligned} & \text { STKi } \\ & \text { QEvISTION: } \end{aligned}$	$\begin{aligned} & \text { OCF, } \\ & \text { COEFF. } \\ & \hline \end{aligned}$	ctn. FOSNO Qf Prf.car.	$\begin{aligned} & \text { crunitice } \\ & \text { ! valus } \\ & \hline \end{aligned}$	$\begin{gathered} \text { חADTIAI } \\ \text { COOD. CCE. } \end{gathered}$	$\begin{gathered} \text { STIW nf SR. } \\ \text { ACDED } \end{gathered}$	$\begin{gathered} \text { Dann. VAR. } \\ \text { C.IIM. } \end{gathered}$
1	1.90000	0.0	0.0	3.42117	n. 0	-0.0	0.0	
7	4.0606?	1 1-nth934	OR69600	L.6c630	O.4330	0.16192	1.46521	0.01064
$\stackrel{8}{8}$	4.13375	1.75212	-0.97419	2.29232	-0.390n4	-9.145R6	7.28675	0.05290
9	16540.1875	44106.75781	0.10002	0.09003	0.56 .539	0.20999	7.65970	0.05561
10	2.7500 .7	1.73205	n. 38746	0.61676	0.62?22	0.23177	14.67396	7.10653
11	1697.37509	6226.62109	-i). 23007	0.20022	-0.33172	-C.12441	6.29888	0.04573
12	2.25062	0.68875	0.60511	2.29606	0.76477	C.09955	7.697 R7	0.05588
13	1.25000	1.7701?	0.78316	0.81563	0.960720	0.74115	10,79489	0.07929
5	2.87500	3.03040						-07822

TABLE 220 STUDENTS KEY 4

## SAMPLE SIZE 16 <br> DEPENDENT VARIABLE IS NOW NO. 4





	MFAN	$\begin{gathered} \text { sTn. } \\ \text { nEviALOM } \end{gathered}$	$\begin{aligned} & \text { RES:- } \\ & \text { COECEF } \end{aligned}$	STO.corno OF Rrrufne	r.nmpliten I_VOLUE		$\begin{gathered} \text { sim nf so. } \\ \text { annan } \end{gathered}$	$\begin{gathered} \text { DOTP. VAR. } \\ \text { cIIM. } \end{gathered}$
1	1.00700	0.0	ก. 0	3.98:526	$0 \cdot 0$	-n.0	3.7	0.0
	$4 \times 96067$	1.668934	0. 37589	1.81536	0.32706	$\cdots$	0.07917	0 00006
9	4.13375	1.25212	-0.45103	2.5936 .4	-n.17410	-0.065k6	1.AR36)	0.014??
9	16540, 18750	44106.75791	0.00001	0 00cacz	0.21464	- 0.15207	16.76025	0.1465
10	$2.2507 n$	1.73205	0.29784	$0 \cdot 6.9702$	0.4273n	0.15944	1.36882	0.71034
11	1697.37500	6226.62109	0.20018	0.00024	0.71917	0,26223	3.13180	0.023165
$\begin{aligned} & 12 \\ & 13 \\ & \hline \end{aligned}$	2.25062 1.25000	0.681875	1.40123	2.59356	0.54733	0.20082	6.52008	0.04923
4	2.A1250	2.97139	0.	0,92171	$0 \times 18605$	0.23273	0.11218	-0.085

TABLE 221 STUDENTS KEY 4
SAMPLE SIZE 16 COEFFICIENT OF DETERMINATION 0.3022
DE PENDENT VARIABLE IS NOW NO. 3 MULTIPLE CORR. COEFFICIENT 0.5498
ANAIYSIS TF VARIANCE FRP THE MUILTIDLF

SOIJRCF OF VARIATINN	n.F.	$\begin{array}{r} \text { SIJM OF } \\ \text { SOULIAES } \\ \hline \end{array}$	$\begin{aligned} & \text { MFAN } \\ & \text { SOIJAPES } \end{aligned}$	$\begin{gathered} f \\ \text { VAI UE } \end{gathered}$	p
DIJF rn Regressinn .............	$\boldsymbol{\beta}$	0.56179	0.070 ? 5	7.3790	
DEVIATION ABDUT PESOCSSIOMe.	7	1.29739	0.18534	-	n.s.
тпT^I....	15	1.85937			


$\begin{gathered} \text { VARIABLF } \\ \text { NO. } \end{gathered}$	'AFAN'	$\begin{gathered} \text { sin. } \\ \text { nevincion } \end{gathered}$	$\begin{aligned} & \text { 2Fr. } \\ & \text { COEFS. } \end{aligned}$	$\begin{aligned} & \text { eTn.carns } \\ & \text { af prgncone } \end{aligned}$	COMDIITF   TVALIIE		$\begin{gathered} \text { Sllu NF SO. } \\ \text { AODED. } \\ \hline \end{gathered}$	$\begin{aligned} & \text { DRON. VAP. } \\ & \text { CVMM. } \end{aligned}$
1	1.00007	0.0	0.7	0.43751	0.0	-0.0	0.0	0.0
7	4.04042	1.669374	2.09163	0.20212	2.45317	0.016983	0.00537	0.00789
8	4.13375	1.25212	-0.17132	0.29955	-0.42045	-0.156,94	0.18276	0.09829
9	16540.1875	44106.75731	-0.00000	0.00030	-0.43794	-0.16330	0.00386	0.00209
10	?.250n0	1.73275	2. 204 ? 9	0.07767	0.0552?	0.72.047	0.00821	0.0044 ?
11.	16.97.37500	6226.63199	0.00001	0.09093	0.47904	0.17816	0.00572	0.00307
12	2.25062	0.64875	0. 25570	0.24776	0.99958	0.31838	0.30570	0.16441
13	1.25900	1.77017	0.05351	0.10267	0.52124	0.12329	$\mathrm{n}, 05036$	O-02708
3	0.15625	0.35208						

TABLE 222 STUDENTS KEY 4



[^0]:    1 Because of multiple responses, percentages have little meaning and hence were not calculated

[^1]:    * based on appropriate d.f.

[^2]:    1. Keys 12-19 Not Used. Oaly Variable Numbers Used In Keys 20-27.
